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Abstract

This paper discusses the Hybrid Fiber-Coaxial cable TV environment as a data delivery service
providing subscribers with specific levels of service. We overview HFC for data delivery and
Com21's UPSTREAMS architecture for HFC data delivery using an ATM cell based format. We
discuss the evaluation of levels of service for individual subscribers and the need for both new sim-
ulation traffic models and for changing the common approach of evaluating communications sys-
tems with simulation models that have only one-way paths. Results and a new simulation traffic
model, based on web browsing, are presented. Finally, we give some early results on scheduling at
different qualities of service, previously presented in [1]. Our scheduling algorithm is based on the
Class-Based Queueing work of Floyd and Jacobson [14] applied at the MAC layer to ATM cells.

1.0 Introduction

The IEEE 802.14 Cable TV Media Access Control [2] and Physical Protocol Working Group and the ATM Forum’s
Residential Broadband Working Group, for ATM over HFC, are both working on standardization of broadband data
delivery. Many companies are participating in the standards process, some of these with cable modems already
announced or on the market. The IEEE 802.14 Working Group is chartered with providing a single medium access
control (MAC) and multiple PHY standard for cable TV networks. 802.14 must support IEEE 802 layer services and
must also bATM Friendly The expected data interface of choice in the home is a 10 Mbps ethernet and attached
devices are expected to be those which support the TCP/IP protocol suite.

The results presented in this paper are based on a Com21-developed protocol called UPSTREAMS: The Upstream
Protocol for Sharing Transmission Resources among Entities using an ATM-based Messaging System [6]. This pro-

tocol has many features that are expected to be in the future IEEE 802.14 standard. In the next section, we overview
Com21’s approach, in section 3.0 we discuss some considerations for providing differentiated levels of service, sec-

tion 4.0 presents our recent work on appropriate simulation traffic models to evaluate these architectures, and section
5.0 presents simulation results on scheduling for quality of service.

2.0 Overview of the UPSTREAMS protocol

In the HFC environment, stations cannot communicate directly, making it impossible to use a DQDB or CSMA/CD
MAC layer. A slotted ALOHA technique might be used, but the standards call for supporting both connection-ori-
ented traffic and connectionless traffic and high utilization of the upstream bandwidth is desired. UPSTREAMS uses
a mac layer where all stations are precisely ranged to a time-slotted channel that is shared among the subscriber sta-
tions under the control of the head-end. The precise time-slotting prevents stations from interfering with one
another’s transmissions and the head-end control allows for dynamic allocation of the bandwidth among the sub-
scriber units to provide the level of service that a particular type of traffic requires and for which a particular sub-
scriber has paid. Subscriber terminals communicate with the head-end controller to request access to the upstream
channel and the head-end controller's scheduling algorithm allocates these time slots among the stations using the
requests from the stations and knowledge about the level of service subscribed to at a particular station. This architec-
ture has the advantage of reducing the complexity in the subscriber’s unit to keep its cost down.[3, 4]



The basic information unit that is sent in each upstream time slot is a 53 byte ATM cell augmented with 1 byte of
management information, plus FEC and guardband bytes. The raw downstream channel bandwidth is 30 Mbps with a
usable data payload of 23.9 Mbps. The downstream channel is shared by all the subscriber units for both user and
management traffic. The raw upstream channel bandwidth is 2.56 Mbps with a usable data payload of 1.92 Mbps.
However, multiple upstream channels can be employed on each cable, ultimately achieving a symmetric data rate if
required. The standards call for supporting from 50-2000 stations on a single cable.

The head-end controls the upstream channel by isgmargsthat specify the station(s) and type of messages that

can be sent in each upstream slot. Grants are may be issued to groups or all stations to sign on with the head-end
(invite grant$ or to make requests for bandwidth for reactive traffic neealsténtion granfs Grants are issued

directly to individual stationgdfrect grant3 to send data in a particular time slot on the upstream channel. Since mul-

tiple stations can send in any invite or contention slot, random access algorithms are used for these slots to resolve
contention when it occurs. Data is only sent in the direct grant slots. Multiple grants (up to 15) can be packed into a
single downstream cell. A block diagram of the request and grant flow is shown in figure 1. General issues for the
head-end scheduler, without considering quality of service, are: 1) grants must reach a station on the downstream in
sufficient time for it to respond on the upstream channel, 2) don't schedule too far in advance (though system delays
must be accounted for), and 3) avoid using contention when possible.

FIGURE 1. Request and Grant Flow
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A scheduling algorithm is applied to the flow of resource requests using information about the type of subscription
service of each traffic flow. Grants are allocated to specific upstream cells based on this scheduler input. The head-end
scheduler block in figure 1 implements the service model while the scheduler at the station schedules based on simple

priority.



3.0 Considerations in Providing Tiers of Service

Today’s internet users fall into several categories and have different expectations and requirements for their service
level. The casual user needs a lower performance than the work-related user, and the work-at-home user is likely to be
willing to pay a higher price for a higher level of service. In between these two types of users may be recreational
users who are willing to pay some premium for increased service or small business or home businesses who may also
wish to pay for some kind of increased service level. The marketplace will help to sort out what kinds of users would
like what kinds of service and at what cost, but we must first be able to quantify what a user expects as “increased ser-
vice” and be able to deliver it.

From a technical perspective, we've approached this problem in three ways: providing the mechanisms to deliver
quality of service, developing an adequate traffic model to study these mechanisms in simulation, and getting a
clearer picture of what a user expects a better level of service to provide. We're finding this to be something of an iter-
ative process and continue to work on our understanding of the problem and its solutions. This paper is a report on
our current status on this problem. Our studies have all been carried out with simulation models of UPSTREAMS.

We started with a QoS model with three categories of traffic: CBR, where each connection receives a constant bit rate
delivered at minimum possible jitter; CIRcammitted information rateervice with a minimum guaranteed rate, a
maximum bound, and no guarantee on jii‘l;ewd a best effort (BE) category which receives available bandwidth
only. We take the CIR definition from frame relay as “The information transfer rate which the network is committed

to transfer under normal conditions. The rate is averaged over a minimum increment of time.” The BE traffic may or
may not be bounded, both as a class and by individual STU. Traffic models for the first category include low bit-rate
alarm information, telephony, and conventional videoconferencing. Traffic models for the second category include
classes of pmium data servicBke work-at-home data traffic or Internet videoconferencing. Traffic models for the
third category include electronic mail. Another important traffic model is web-surfing, but it is less clear to which cat-
egory it belongs and we will discuss this further later in the paper.

The first obvious criterion for differentiating tiers of service is bandwidth. We concentrated on this criterion in our
first work on scheduling for QoS and reported on it in [1] and present part of this work in section 6.0. We are consid-
ering borrowing from the IETF’s integrated services working group to define premium service similarly to a con-
trolled load service in that users should not see behavior appreciably different whether the system is load or not. In
this case we should add another important criterion, the latency the user sees. It is expected that this is related to band-
width, but the two are not completely correlated.

We made our initial explorations of bandwidth-differentiated QoS using “traffic blasting” sources. More recently, we
have been exploring the proper way to evaluate our HFC architecture so that we can predict the performance a sub-
scriber will see at a particular level of service and set bounds on the provisioning of users on a channel. It is an
accepted fact that users will produce traffic and consume system bandwidth in bursts, but it is more difficult to find
simulation traffic models of this true user behavior. We quickly learned that we can evaluate only the coarsest features
of our architecture with simple traffic models. In the next section we discuss our work on traffic models.

4.0 Appropriate Traffic Models for Cable Data Systems

Our simulation model is similar in its general architecture to the “Common Simulation Framework” model that Mil3,

Inc. created for the 802.14 working group members who use that company’s Opnet product [2]. Figure 2 shows a
block diagram of our model. The simulation includes a model of Com21's UPSTREAMS protocol. The headend
module (HE) handles scheduling of the upstream channel and control of the contention resolution algorithm. Each
station (or cable modem, m) is modeled as a separate module and includes both a model of the cable modem and one
or more application models that source traffic in the upstream direction. The upstream bus timing is modeled in detail,
with time slots and propagation delays. The downstream bus is not modeled except as messages passed from the hea-
dend to the stations. The downstream messdgerlude the major components of downstream delay, most notably

1. CIRis similar to Available Bit Rate (ABR) when the Minimum Cell Rate (MCR) is non-zero.



FEC and interleaving delays. Variants of this basic model are being used by most of the participants in the 802.14
working group

FIGURE 2.Block diagram of the system simulated
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How best shall we use simulation to determine performance of cable data systems? This question is particularly
important given the unique architectural features of these systems. The 802.14 working group has used a number of
one-way traffic source models to measure performance [8]. The “one-way” nature means that the sources will create
traffic (packets, cells) according to some pattern or probability distribution and the output is queued at the cable
modem until it can be sent. If the traffic level is too high for the available bandwidth, it will queue up and cause large
backlogs in an infinite queue system (as in most models) or be discarded in a finite queue system. Large backlogs are
problematic because they will show long packet or cell delays that primarily reflect these queuing delays and because
many vendors’ systems (as Com21's) use “piggyback” schemes that will completely remove these backlogged sta-
tions from the contention process and thus mitigate the critical loading on the contention resolution mechanism. Most
damning of all is that there are very few real applications that function this way. Nearly all of the applications that are
expected to be used in the home are based on the TCP/IP transport layer protocol and they will not have more that one
window of data outstanding (a maximum of 16-64 Kbytes, depending on the implementation). In the real world of
computer networking, feedback is a major part of the system dynamics. The true interaction of the application, trans-
port protocol, and MAC layer protocol in the presence of bursts and congestion is a complex one. Can one-way mod-
els with no feedback give a clear picture of the kinds of traffic loads our systems will experience?

A careful use of backpressure from the modem queues to the traffic sources might be used to reduce the sending of
data that would not be sent in a real system. The problem of a proper source traffic model remains. Exponentially dis-
tributed packet arrivals (the popular poisson process) do not well represent most traffic processes (e.g., [9]). Their
usefulness as source models for evaluating a system can also be questioned. We will explore some traffic sources to
evaluate cable data systems.

Exponentially distributed source modelsFirst, consider a simplified version of the “scenario A” model suggested

in [8]. In our model, the number of packet sizes selected is reduced, but the distribution is similar, UPSTREAMS is
ATM cell-based, so source models are programmed to produce cells directly at each packet-time; 60% of the packets
are 2 cells long, 30% are 11 cells, and10% are 32 cells. The average packet interarrival time can be varied to create
different average bit rates per source. About 12% of the channel will be dedicated to contention opportunities, so only
about 1.7 Mbps is available for data payload. If sources are configured at 10 Kbps, the system will be saturated
around 150-160 stations. If the average source rate is reduced to accommodate a larger number of simultaneously
active stations, the interarrival time becomes stretched out in time and the likelihood of stations competing for the
upstream bandwidth at the same time becomes very small. We start by examining results for the 10Kbps sources.

Results from simulations using this traffic source model are shown in figure 3. There is a smooth curve showing that
architectural features dominate the delay at lighter loads, first the delay is due to the round trip time to get an alloca-
tion of upstream bandwidth from the headend, then some extra delays due to contention resolution come in. At the
larger numbers of stations, the system becomes limited by the upstream bandwidth bottleneck and delays grow
toward infinity as the queue sizes. The general shape of this result can be predicted by simple analysis, so it is pleas-
ing to use a traffic model whose behavior we can predict. A more important question is what insights into the archi-
tecture have we gained from running these simulations? We can measure céllhdslayilizatioﬁ, average queue

sizes, and some other statistics, but we cannot decide what these values mean to a typical application.In fact, mea-

1. Itis also possible to reassemble cells into packets and measure packet delay, but they will follow a very similar curve.
2. The maximum bus utilization is 88% since at least 12% of the bus is dedicated to contention opportunities.



surement studies have shown thatdtieragebandwidth per user is quite low and that most applications have some
sort of bursty behavior. In this case, we can support more simultaneous users, but we might see very different behav-
ior than that of exponentially distributed sources.

FIGURE 3. Results for exponentially distributed sources
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A large segment of the user population for cable data systems is expected to be spending its on-line time accessing
world wide web pages. A model of this application would be helpful in evaluating architectural features for our prod-
ucts. We would expect traffic sources in such a model to look quite different from the exponentially distributed traffic
sources and this may lead to different architectural insights. There is a growing body of research work on the mea-
surement and characterization of world wide web traffic.

Deng's WWW traffic source model. Building on the WWW measurement and characterization work done by
Cunha et. al. in [10], Deng carried out further measurements of what is expected to be the most popular applications
used from home and created a one-way model of web surfing [11] from the client side. Deng created an ON-OFF type
model which can be outlined as:

1. Assume starting in the ON (browsing) state. The state changes to OFF at a delay (in seconds) taken from a
weibull distribution with parameters¥@ 0.88).

2. A URL request packet of size 250 bytes is produced after a delay picked from a weibull distribution with
parameters {e°, 0.5).

3. Repeat step 2 until the state changes from ON to OFF.

4. Return to the ON state after a delay taken from a pareto distribution with parameters (60, 0.5).

The advantage of this traffic model is that is allows us to model systems of more than one thousand web-surfing
sources, since it is bursty. That is, individual sources may be inactive for long periods of time, then send their mes-
sage. Simulations show that the average source rate is about 90bps. Use of these distributions ensures that at least 60
seconds are spent in the OFF state, and at least 90 seconds are spent in the ON state. How large are the bursts during
the ON state? Each message is fixed at 250 bytes (6 ATM cells for our MAC) in the Opnet code. The minimum time
between these messages is about 4.5 seconds, so the maximum source rate during the ON period is about 450bps, but
this would correspond to one message interarrival time being picked at 4.5 seconds. All 6 cells arrive at the cable
modem’s queue at the same time. If they are sent in the minimum possible time to make a contention request to the
headend and the cells are sent consecutively at the upstream bus rate of 200 microseconds per cell, the data can burst
at a rate of about 200 Kbps. This clearly produces a bursty model, though the burst sizes are not large. The burst rate
could be increased by choosing larger or random message sizes, but two important questions to consider are 1) how
well does this model the dynamics of WWW browsing and 2) does this model produce additional information about

the system being simulated that cannot be learned using the exponential sources. Note that it is not possible to use this
model to make any measurements of what kind of performance the user would see with respect to the application.

To examine the value of Deng’s traffic source as a simulation model, note that we can repeat the experiment using
exponential sources, adjusting their average interarrival time to give an average source data rate of 90bps. This allows
us to compare the bursty, one-way WWW model with the exponentially distributed source traffic. In figure 4, the

average cell delays for the two traffic models are plotted. Although they appear different across this range, note that



these values occur within a very limited range, between 12 and 28 milliseconds. The channel utilization results are
nearly identical. In fact, there is very little difference in the effect of the two traffic source models on the system under
study. The differences in average cell delays might come from the slightly larger contention waits for the less
smoothly distributed Deng model. Each message of 6 cells will have to wait at least one round trip time for the headed
to send a grant and may need to contend for the upstream channel.In lightly loaded systems, the delay is dominated
by the round trip time and the scheduling delay; in more heavily loaded systems it is dominated by the contention
wait. Neither of these two models produced significant collisions on the upstream channel.

FIGURE 4. Results for Deng/Mil3 web browsing sources
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This one-way WWW model does not offer any additional insights about system behavior. Although a model like
Deng’s may be useful for creating analytical models, in this age of fast CPUs, it seems like an unnecessary simplifica-
tion of the actual web browsing process for a simulated traffic source.

A more detailed browser model for simulation.Neither of these models gives us a sufficient feel for what is actu-

ally going on in the system nor does it represent a real application well. Since real applications enter into a transport
protocol level conversation with a remote server, they will not continue to fill a cable modem’s queue beyond the
amount proscribed by the transport protocol. With a reasonably fast desktop machine and a reasonably fast simulator,
it seems that more of the web browsing “conversation” might be simulated, leading to more insights on system behav-
ior and architectural decisions and the ability to measure some quantities that pertain to application-level perfor-
mance.

A browser traffic source model should start with the typical process initiated when a user makes a request for a partic-
ular URL:

1. User request for a URL results in opening of a TCP connection: a 40 byte SYN packet is sent.

2. The SYN is received by the remote server, it returns a SYN acking the connection after some service time delay.
Upon its receipt, the URL, typically 100-200 bytes, is sent to the remote server.

3. After the service time delay, the remote server returns the requested page data including other URLSs referenced
on that page. We assume that the typical case is for this information to fit into two packets thus causing a 40 byte
packet to be sent which is both ACK for the two packets and FIN for this initial TCP connection. When browsing

in a graphics off mode, the page would be displayed and done at this time. Otherwise, at this same time, SYNs are
sent to open parallel connections for all the URL references found in the page. A typical number for such refer-
ences is four.

4. After the service time delay the remote server(s) return SYNs acking the connections and the URLS, as above
100-200 bytes, are sent from the requesting client.

5. After the service time delay, the remote server(s) returns the documents requested and FINs for the connections
and the requesting client ACKs the data and the FINs. The number and spacing of ACKs depends on the size of
the documents and, for larger documents, on the particular implementation of TCP. When the FINs have all been
received by the client, it will be able to display the total page.

1. The author is indebted to Van Jacobson for suggesting most of this model.



6. The user (or controlling process) delays some “think time” before making the next request, at which time,
return to step 1.

A diagram of this message exchange is shown in figure 5.
FIGURE 5. Diagram of web browsing message exchange
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For a web-browsing user, the performance measures of interest concern how long it takes to “see something”. These
have been split into two measures, first, the time from when a user requests a particular new URL until that page has
been completely fetched (and is thus available for display). This is referred to here as the “initial URL's data” time
and happens at step 3, above. The second measure is when all the data associated with all the URLs in the page have

been received and referred to as “all data” and happens at step 5 above.



We now have a model and some figures of merit that have meaning at the application level. To fully implement these
as a simulation model requires having a fully functional two-way model of our system. It also requires getting repre-
sentative values for all of the web browsing parameters and implementing a model of the transport layer protocol and
its messages in the simulation. All of these are important end goals and are planned for the future, but are not done at
this time.

In order to get initial results without having to build a complete simulation model with remote servers and a down-
stream path, an intermediate approach was taken. The real process described above was used as the basis for the
browsing source simulation model. At each stage of the process outlined above, the browser source module sends a
message to the cable modem module theits until the modem signals that its queue is erhpfgre it adds the

server delay and goes on to the next step. The wait time for the remote server is a parameter and is set at a constant
value to which is added a value uniformly distributed within +/-1ms. The model is instrumented to collect the “first
page time” of step 3 and the “total page time” of step 5. The upstream transmission delay of the last cell is not
accounted for, nor is the downstream transmission delay, but these are not the quantities of interest.

Although many of the parameters would typically vary, several were fixed across simulation runs for some initial
experience with this type of model. First, all URL sizes were fixed at the same value. The results in this document
used URL sizes of 3 cells (97-144 byﬂeﬂ;ble “first page” information was assumed to fit in two packets which could

be ACK'd with a single 40 byte packet, four URLs embedded per page, and each of these four document sizes was
selected from the pareto distribution given in [10].

Although part of the transport protocol behavior is modeled as outlined above, the simplifying assumption was made
to send all the ACKs for the four documents fetched in the second stage at the same time. The number of ACKs was
computed as the document size divided by 1460 bytes per packet and that result divided by 2 packets per ACK. This
clearly ignores the transport protocol interactions and probably causes the time for “all data” to arrive at the applica-
tion to be underestimated by at least one round trip time (or “server time”) due to ignoring slow start. A more com-
plete model of the interaction of the browsing client with the transport protocol and the downstream traffic is crucial
to determining the total throughput and latencies the user sees, but we defer the inclusion of these features until a
complete two-way path is implemented in the simulation model.

A more difficult problem is picking the average “think time” per user; that is, the average amount of time a user waits
before selecting another page. Although [11] has some measurements of this value, it is unclear how well these apply
here since the authors were trying for a more simple on-off model. It should be possible to extract this information
from the traces located at [12]. We have recently learned that researchers at Georgia Tech are pursuing a model simi-
lar to ours and plan to do some measurements [13]. If this work is made publicly available, these values may be more
applicable to our model. In the meantime, how should one best select this time? Real think times tend to be fairly long
and vary widely. This can be problematic for simulation. So, this initial model was set to have random think times
uniformly distributed between one and 30 seconds, a very conservative (pessimistic) assumption.

In figure 6, we show the results of two sets of browser runs. One uses a server time of 20 milliseconds and the other a
server time of 60 milliseconds. A value of 20 milliseconds is picked to correspond to the time to access data located

or cached at the headend. The adjusted average response time is just the response time with the constant server times
subtracted (two times the server time for the initial URL, four times the server time for all data). Using this time
makes it easier to compare the relative performance of the different server times or locations and isolates the part of
the delay contained within our system. To get an idea of the delays the user would see, add the server times to the
adjusted values.

Figure 7 shows that the server time makes no difference until the largest numbers of stations and, even then, the dif-
ference is quite small. This is due to the dominance of the think time over the data transfer time. The 20 ms server is
the more conservative assumption on traffic load, so that is used as our baseline. A set of simulation runs was per-
formed with the server time of 20 ms and all URL sizes set to take 5 cells (193-240 bytes) and compared to the base-
line simulations in figure 7. Here there is a real difference between the two scenarios, the larger URL resulting in a

1. One set of run was done with URL sizes of 5 cells (193-240 bytes) to show the differences.



greater bandwidth use and moving the curves to the left. This also shows that URL size is an important part of the

burst behavior in this model and a bit of examination shows why.

FIGURE 6. Results from more detailed web-browsing model
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FIGURE 7. Results with larger URL size (5 cells vs. 3 cells)
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There are three times that the browser source potentially sends a larger number of cells: when the four SYNs and the
previous FIN are sent, when the four URLs are sent, and when the ACKs are sent for the four documents obtained
from those URLSs. In the first case, a source always sends 10 cells. In the second case, the source sends 12 cells for the
3-cell URL scenario and 20 for the 5-cell scenario. The minimum document size is 128 bytes, so the third case could
easily be only 8 cells. Although the third case may sometimes exceed 20 cells, it appears that the second case, the one



dependent on the number of URLS, dominates. Of course, real URLs are small, but vary. This behavior could easily
be simulated, but it appears the shape of the resulting curves would lie somewhere near the curves of figure 7.

The average source rate for a browser source is about 750bps, five times that of Deng’s model. This is due in part to
the short think time, in part to the burstier behavior than Deng’s model (further discussed below). Altering the think
time (or off time) distribution makes it possible to increase the traffic levels while preserving the application behavior,
making it easier to exercise the architectuvéith the backpressure indication from the cable modem’s data queue to

the traffic source, we can also keep track of the rate that each burst of data is being sent at. The average data bursts are
between 120-130 Kbps for the simulations with smaller numbers of stations and can decrease to 20 Kbps for the sat-
urated runs. This information can help in understanding the dynamics of the system and can be plotted against the
response times to help determine what level of burst bandwidth a station will need for adequate performance.

The results of simulations with the browser model showed the “good news” of being able to support a large number of
simultaneous users without significant delays being introduced into the time to present a web page. Using this traffic
model, it can be seen that the curves start up due to the effects of contention and there are no false benefits of exces-
sive piggybacking when queues are long. This makes it easier to test architectural features.

Comparing the models.All the models used so far in this report are compared in figure 8 by plotting cell delay vs.
number of stations. Two additional data sets were added. One uses exponentially distributed sources with 750bps
rates to match the browser rates, the other uses Deng’s model with no off time to get the maximum possible source
rates. It is not possible to get average source rates higher than 265bps from Deng’s model without further altering the
model dynamics. The delays for the Deng model with no off state are slightly lower than the delays with the off state,
but this could have to do with the larger number of simulation points (all simulations were run for 600 seconds). This
shows that the Deng model does not have sufficient burstiness to stress the modeled system.

FIGURE 8. Average cell delays for all sets of results
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Figure 8 shows that the one-way models produce manifestly uninteresting behavior for architectural evaluation. The
Deng/Mil3 model has a very low average cell delay across all runs, nearly identical to the exponential model. This
kind of “gentle” behavior gives good simulation numbers, but does not provide a traffic model sufficient to exercise
the system’s contention mechanism or to stress scheduling algorithms. The browser model represents the actual

1. Automatic browsing programs may, in fact, exhibit short think times.



browsing client-server “conversation” with more fidelity and produces more interesting behavior. When we want to
stress a system by producing high volumes of traffic, we would be better served by constant bit rate sources transmit-
ting at a data rate sufficient for our purposes (“bandwidth blasters”).

All models are compared by plotting average cell delay vs. the bus utilization in figure 9. In figure 9, it is possible to
see the characteristic curve of the exponential sources does not change much even when the source rates vary. Note
the similarity in the 10Kbps and the 750bps curves. The curve for the Deng/Mil3 source never has a high bandwidth
utilization, but the delay shows that there are more contentions at the lower bandwidth utilization due to the number
of sources involved compared to the other models’ number of sources at that utilization. The Deng/Mil3 curve with

no off state lies closer to the other models since the utilization is increased, but the highest bandwidth utilization is
26%. The browser model with 5-cell URLs gets more bandwidth utilization at the higher cell delays because the aver-
age message size is longer. The results shown here reflect some architectural tuning that was done after the first uses
of the browser model. This tuning made it possible to push the curves to the right. The other models do not suffi-
ciently stress the system to permit exploration of options.

FIGURE 9. Average cell delay vs. bus utilization
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Summary and current status of our simulation traffic models Using our browser model, we were able to learn

much more about the potential behavior of a home network. We were able to more appropriately assess the impor-
tance of rapidly resolving contention and developing algorithms to reduce contention. Our investigations convinced
us that we must model our system with all the salient features of the application and transport-layer conversations if
we are to design architectures that will function well when deployed in the real world. We are quite aware that this
traffic model is not yet fully adequate in this respect, but we are pleased with the insights its use has provided.

5.0 Preliminary work on Quality of Service scheduling

In this section we overview the initial work we did on scheduling for QoS and reported on in [1]. At that time, we had

only applied bandwidth allocation in the upstream direction, but we are also adapting the algorithm to bandwidth
allocation in the downstream direction. We are interested in discovering the effects of using a controlled bandwidth
access link in both directions on a two-way browsing model.

One of our goals in a scheduler for grant allocation is one that can include our three basic tiers of service, CBR, CIR,
and BE, in an integrated fashion. Our scheduler is based on the class-based queueing (CBQ) algorithm developed by
Floyd and Jacobson [14]. The concepts of classes, a class hierarchy, and priorities can be mapped to our tiers of ser-



vice. Still, CBQ was meant for packet-level scheduling and we needed to schedule grants based on requests for allo-
cations to send cells, undelineated by packet boundaries. Tuning is required to select the correct number of requests to
schedule at a time and our scheduler works in an environment where it is necessary to schedule well in advance (due
to round-trip delays) and to schedule a small block of upstream cells at one time. To keep that block size, and hence
scheduler reaction time, small the scheduler must be time-efficient, but must also be extensible, as the number of
active STUS on an cable can vary widely. CBQ was selected since it appears it will work under these circumstances.

The grant scheduler works on ATM cellsstiredsof packets rather than full packets as in CBQ, thus our algorithm is
shreddedCBQ, or SCB@. This scheduler has all the basic features we wanted, integrating all our requirements into a
single scheduling mechanism, and has good sharing performance, as will be seen in the results. However, several
aspects will require further tuning.

SCBQ classes and parametergollowing [14], we can draw a diagram of our class hierarchy, which is headed by

the link (see figure 10). Under the link there are four classes, CBR, CIR, BE, and HYST. CBR is priority 1, CIR and
BE have the same priority, and HYST is the lowest priority possible. The CBR class includes both an administrative
class that sends contention grants every ten slots (CS) and subscriber CBR, and is allocated a total of 20% of the
bandwidth. The BE class has an aggregate allocation of 5% of the link, but may “overdraft” the unused link band-
width. The subscriber CIR classes are installed under CIR and set up with both a guaranteed allocation and a maxi-
mum allocation. CIR itself cannot “overdraft” the link. In the experiments, constant bit rate source (“bandwidth
blasters”) were used to drive all the STUs. In most cases, we were driving at higher data rates in order to isolate
scheduler effects from contention effects.

FIGURE 10. Class hierarchy
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In all the experiments, the CS class takes up 10% of link, reducing the available payload or data bandwidth to 1.73
Mbps. Each upstream ATM cell is sent in a time slot of duration 200 microseconds, giving a data payload of 1.92
Mbps. All simulations were run for 30 seconds of simulated time. The plots shown here are of the average instanta-
neous utilization.

Simulation results. In the first experiment 10 STUs are configurechatlem-qualityCIR and are overdriving their
allocation. The service level is a minimum guaranteed rate of 28Kbps and a maximum of 200 Kbps each. Each source
comes on at one second intervals into the simulation, sources traffic at a bit-rate of 384 Kbps and turns off at one sec-
ond intervals before the end of the simulation. With 1.73 Mbps available for sharing, each should get 173 Kbps,
which is under the individual maximum limit. Results in figure 11 show that, indeed there is equal sharing of the
channel. In figure 12 a close up of the STU utilizations (without the aggregate) shows that the STUs get more of the
channel bandwidth when there are fewer than 10 STUs, but that each is limited at 200 Kbps. Although we configured

1. We use HE to denote head-end and STU to denote the station, or subscriber terminal unit.
2. M. Laubach would like to thank Steve Deering for inspiring the name for our variant of CBQ.



our CBR service in aat mostrate delivery mode, the average contention slot spacing was 2.0 milliseconds, as
desired, with a very small variance. As the source bandwidth exceeds the allocation, the uncontrolled sources fill the
infinite STU queues; note the effects of the backlogged STUs emptying their buffers.

FIGURE 11. Ten controlled sources sharing the upstream channel with their aggregate
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FIGURE 12. STU-only plot of the same experiment as in figure 11.
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In the next experiment (figure 13), a constant bit rate subscriber stream of 64 Kbps was added, provisioned as a single
cell every 6 milliseconds. When the CBR stream comes on at 3 seconds into the simulation it reduces the overdraft
bandwidth available to the 10 CIR STUs.

What happens when best effort service is part of the mix? Recall, that thigédast effort service where no mini-

mum (other than an allotment of 1% of the link bandwidth for the entire class) rate is guaranteed per subscription
flow, but no maximum is enforced either. Any spare bandwidth can be used by waiting traffic of this class. The STUs
subscribed at BE have sources sending cells at 96 Kbps and the CIR serviced STUs have sources sending at 384
Kbps. The CIR service here is lower bounded at 128 Kbps and upper bounded at 300 Kbps. Each BE STU'’s source
comes on at one second intervals from the simulation start, then the CIR serviced sources turn on. A CBR source
sends data between 15 to 25 seconds into the simulation. Figure 14 shows the individual STUs with the aggregate



FIGURE 13. Example of figure 12 with a CBR (64 Kbps) source added
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bandwidth value, ramping up as additional sources start to send. In Figure 15 the same experiment is shown with just
the STU utilizations plotted to show clearly that the BE service is reduced to accommodate the CBR service.

0

FIGURE 14. Five BE STUs, five CIR STUs, and a CBR STU
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We examine the sharing behavior in figures 14 and 15. Before the CBR source is turned on, there is 1.73 Mbps that
has 657 Kbps of allocated bandwidth (the 128 Kbps of each CIR service plus the 5% of the link allocated to best
effort) being used. This leaves the rest to be shared equally between the six classes. Thus, each CIR STU should get
295 Kbps and the BE class gets 253 Kbps, to share equally among its 5 members, at about 51 Kbps. In the plots, this
appears to be the case. When the CBR source comes on, one-sixth of its bandwidth is taken from each CIR STU and
one-sixth is taken from the BE class, spread equally among the 5 members. Although the plot is not at this level of
resolution, the results appear to agree.

Next, we simulated 5 BE STUs and 5 CIR STUs configured as in the previous example, but with CIR given a prefer-
ential weighting in the round robin allocation of excess bandwidth such that the BE class gets 2/3 the excess alloca-
tion of a CIR class. If the excess bandwidth were shared equally, CIR would have 295 Kbps and BE 51 Kbps. With
weighting, each CIR class could get an additional 177 Kbps and the BE class only 119 Kbps. Since 177 Kbps would
put the CIR classes over their 300 Kbps upper bound, that leaves an additional 25 Kbps for the BE class to draw on.



FIGURE 15. As in figurel4 without aggregate traffic

350 T

300

200

150

Bandwidth (kb/s)

50

Time (sec)
This means the 5 BE classes share (86+119+25) Kbps to get 46 Kbps each, as in figures 16. The high usage causes the
aggregate (not shown here) to stay flat at 1.73 Mbps between 6 seconds and 25 seconds, then sources start to turn off.

FIGURE 16. Five CIR, five BE, with a preferential weight given to overdraft in CIR vs. BE
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6.0 Conclusions and Future Work

Our investigations convinced us that we must model our system with all the salient features of the application and
transport-layer conversations if we are to design architectures that will function well when deployed in the real world.
We found that the commonly used one-way exponentially distributed traffic source models were not useful for stress-
ing bandwidth level QoS differentiation, for exploring the dynamics of the contention resolution algorithm or creating
burst traffic effects. Since desktop computers are fast enough to simulate detailed system dynamics, we can't think of
any justification to use a one-way model, except as a modular step toward the final full-feedback design.

Our next step is to complete work on the simulation model of a complete two-way path and to add a transport proto-
col model and an ftp source type. The latter should be possible by modifying parts of the models distribated with



We plan to ascertain whether our browser results hold with a more complete model, then to continue work on sched-
uling for QoS and on provisioning of channels.

Our future SCBQ work will be in three categories: further algorithm refinement, further testing of SCBQ, and turning
the simulation code into efficient runtime code. Further modifications to the allocation algorithm are needed to reduce
CBR jitter and to allow properly sized bursts of cells from stations that are just becoming active. We also need to
apply the SCBQ scheduler to the downstream traffic. In addition, we need to do further work on our hysteresis class
once we have installed appropriate two-way traffic models. We also want to make the modifications to deliver multi-
ple QoS streams to a single STU. Finally, our SCBQ simulation code has departed significantly from the original
LBNL prototype code [5] and needs to be reworked for runtime efficiency.
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