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ABSTRACT
Home and business internet of things (IoT) presents security chal-
lenges that can be addressed using information-centric networking
(ICN) to secure information rather than channels. In particular,
we leverage ICN’s per-packet signing, combined with recent in-
novations in trust schemas, to construct a strong trust zone. This
architecture creates domains governed by a secured trust schema
provided to every device during its enrollment together with the de-
vice’s attribute-based signing cert chain(s). Applications don’t need
to be rewritten to gain security; a run-time library with an MQTT-
like publish/subscribe API uses the provisioned trust schema and
certs to construct, sign and ship outgoing publications and to both
cryptographically and structurally validate a subscriber’s incoming
publications. This unique application of trust schemas (Versec) is
explained and an example home IoT framework is described where
trust schemas express straightforward, homeowner-specific poli-
cies that an open-source library enforces at run-time on behalf of
security-agnostic applications. Along with the specific innovation
in trust management, the platform exploits current and emergent
IoT best practices. Utility programs, libraries, and examples are
available as an open-source Data-Centric Toolkit.

CCS CONCEPTS
• Security andprivacy→ Security protocols;Domain-specific
security and privacy architectures; • Networks→Home net-
works; Network protocols.
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1 INTRODUCTION
Securing IoT is difficult: successful attacks continue despite the
ongoing search for solutions (see for example [4, 54, 63, 64, 69]). A
great deal of trust has been put in encryption at the MAC layer or
in the IP protocol stack (TLS/TCP or DTLS/UDP). IoT platforms
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from companies like Amazon and Google require connection to
their cloud-based servers and have focused on securing that con-
nection and providing privacy to the data sent between endpoints
over the channel. This fails to appreciate that commands can be
sent privately, but may not be authentic. Although commissioning
(provisioning or on-boarding) of new devices in home IoT networks
has been evolving to take advantage of trusted platform modules
(TPMs[36]) and become more secure, the operational security gen-
erally relies on users changing default passwords and performing
sometimes difficult configuration yet does not prevent the hijacking
of low-value devices (e.g., lightbulbs) to gain control of high-value
networked devices like door locks and cameras [23].

Home IoT applications have a very different communication
model than the endpoint-oriented one embodied in prevalent Inter-
net protocols. In IoTmany devices issue messages andmany devices
may be interested in those messages. Thus, publish/subscribe (pub-
/sub) communication APIs are ubiquitous with nearly all platforms
supporting the application-layer protocol MQTT (mqtt.org), e.g.,
HomeAssistant [26] and Samsung’s IoT ARTIK Cloud [65]. Yet net-
work layer implementations typically use multiple endpoint trans-
port connections (to a central broker/server) and channel-based
security protocols (e.g., TLS/TCP) that have repeatedly been found
insufficient to secure IoT [4, 32, 54, 69]. In addition to the existential
evidence of widespread attacks on such systems, Alex Halderman
et al. [21, 39] have shown how the connection-based security of the
Internet is a mismatch to content- (or information-) based systems
and note the issues could be remediated by moving from perimeter-
to content-based security. The Zero Trust cybersecurity conceptual
framework [52, 70, 71] aims to shift security focus to preventing
the unauthorized access of data and services rather than relying on
securing channels with perimeter constructs. Zero Trust requires a
strong identity for both devices and users, an area where signifi-
cant progress has been made [9, 49, 50, 57]. It also requires granular
access control enforcement that makes use of those identities and
here progress has been lacking. Our contribution is focused on
providing distributed granular access control, securing the means
of control as well as the application data.

Though research on ICN protocols for Internet use1 is not yet
Internet-ready, ICN (specifically, NDN) network layer primitives
can be combined with trust schemas [75] in a new approach [41],
called Versec, to create a certificate-based, trust zoned architecture
to solve critical problems for edge networks today. A trust zone, or
domain, is a Zero Trust network governed by a single trust anchor
and trust schema and enforced at run-time by a library using a
signed binary copy of the schema at each entity. Trust schemas
specify fine-grained rules governing names and signing chains to
go beyond simple signer validation to enforce “who can do what to
which.” Devices in a trust zone are commissioned with an identity
bundle (§ 3) of trust anchor, signed trust schema, and the signing
1e.g., https://named-data.net/, https://wiki.fd.io/view/Cicn, https://irtf.org/icnrg
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Figure 1: Devices invoke domain rules at validation

certs associated with a particular identity; nothing is accepted with-
out validation. This paper describes the application of this approach
to pub/sub communications in a home IoT network where its trust
zone can prevent attacks that allow authorized devices on a network
to issue inauthentic high-value commands. Communications from
outsider devices have unknown signatures and can be discarded
with little use of resources. Publications (actionable directives) can
be restricted by roles (“owner”, “child”, “guest”), capabilities (e.g.,
ability to issue particular commands), and locations (“living room
lights”, “ceiling fan”, “front door lock”) where each entity must have
(via its identity bundle) the certificates specified by the trust schema
in order to build a particular publication. Figure 1 illustrates a trust
schema at the Smart Lock being used to reject command publi-
cations from a camera (lacks role certificate to issue commands),
to test a publication signed by a user with a restricted role (time-
of-day), and to reject Data from a non-member of the trust zone.
The outsider phone may have (legitimate) access to the local wifi
network and still be excluded from the trust zone.

Trust zoned applications are implemented using our open source
Data-Centric Toolkit (DCT) [59]. DCT includes a declarative lan-
guage for expressing the rules of the trust schema, a compiler that
turns the schema into binary, and a utility to package the binary
into a certificate. Other utilities create the certificates of the sign-
ing chains and identity bundles (§ 3). Library modules employ the
trust schema at run-time for Data construction, signing, and vali-
dation. Additional run-time modules distribute signing chains for
provenance validation and group keys for symmetric encryption
throughout the trust zone. Since security is specified in the trust
schema, application code does not change as the security approach
evolves. While application binary is unchanged, the security model
can change from one that merely specifies that the signer must be
known to one that adds fine-grained capability control and can add
encryption. In addition to this paper’s trust zoned home IoT, dc-
tIoT, DCT is being used in a secure transport for a legacy intrusion
detection system [42].

Section 2 covers the evolution of trust schemas and presents the
Versec approach used by DCT. Section 3 defines the composition of
identity bundles. Section 4 presents naming and trust schema for
dctIoT. Section 5 describes DCT and dctIoT library modules. Section
6 notes related work and section 7 summarizes and discusses future
work.

2 EVOLUTION OF TRUST SCHEMAS
2.1 Background
ICN fundamentals include uniquely named data packets that reflect
content and the requirement that every data packet be crypto-
graphically signed to ensure integrity and provenance. Early in the
evolution of CCN, Smetters [67] proposed a novel solution of evi-
dentiary trust and secure binding of names to content that does not
require a central authority to disperse names. That work is partially
based on the seminal SDSI [62] approach to create user-friendly
namespaces creating transitive trust through a certificate (cert)
chain that validates locally controlled and managed keys, rather
than requiring a global Public Key Infrastructure (PKI). Certificates
are created that have a particular context in which they should
be utilized and trusted rather than conferring total authority. In
a 1996 paper, Blaze et. al. [22] defined the term trust management
for the study of security policies, security credentials, and trust
relationships. A trust management layer concept in which a system
decides whether to allow some potentially dangerous action was
proposed and implemented as an engine (which the authors likened
to a data base query engine) where requests, certificates, and policy
descriptions (rules) could be submitted for approval/disapproval. Li
et. al. [44] later refines some trust management concepts arguing
that the expressive language for the rules should be declarative (as
opposed to the original work) and focusing on trust management
in quite general, decentralized environments where trust across
boundaries was a critical element. This body of work influences that
of trust schemas, which allow for specifying security rules based
on application name structures. Applying the criteria of [44] that
a trust management approach answers “Does a set of credentials
prove that a request complies with a policy?” suggests that trust
schemas implement a specialized trust management.

Trust schemas employ the NDN protocol’s primitives in a tight
specification of application security rules. In 2015, Yu et al [75]
described an NDN trust schema as “an overall trust model of an
application, i.e., what is (are) legitimate key(s) for each data packet
that the application produces or consumes” and gave a general
description of how trust schema rules might be used by an authenti-
cating interpreter finite state machine to apply the rules to packets.
Currently, the NDN testbed’s NLSR routing protocol adds a regular
expression trust schema specification to a configuration file that
gets loaded with NFD [73] and reads certificates from text files.

2.2 Versatile Security (Versec)
Jacobson [41] proposed a new approach to both the trust schema
language and the integration of trust schemas with applications. He
likened a trust schema to the plans for constructing a building and
noted that one set of construction plans serves multiple purposes:

(1) Allows permitting authorities to check that the design meets
applicable codes

(2) Shows construction workers what to build
(3) Lets building inspectors validate that as-permitted matches

as-built

Construction plans get this flexibility from being declarative: they
describe “what”, not “how”. As noted in [44, p.4], a declarative trust
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management specification based on a formal foundation guaran-
tees all parties to a communication have the same notion of what
constitutes compliance. This can allow one schema to provide the
same protection as dozens of manually configured, per-node ACL
rules.

Prior trust schema work addresses only validation. Versec adds
a declarative schema specification language with a compiler that
checks the formal soundness of a specification (case 1 above) then
converts it to a signed, compact, binary form. The binary form
is used by applications via DCT library routines to build (case 2)
or validate (case 3) publications. “Publications” are objects with
names, content and signatures such as NDN Data packets or MQTT
messages.

An early implementation of the Versec approach was described
in [55]. An updated version is integrated with DCT and briefly
described below. The DCT GitHub repository contains a detailed
language description[19] and annotated examples[12].

2.3 Versec and IoT
Several IoT aspects make it an attractive use case for Versec and
vice-versa. Foremost is IoT’s administrative context. While most
distributed systems are loose federations, a home IoT system is a
closed community of entities acting in close cooperation to perform
specific functions as delegated by a single administrative authority.
Versec provides fully distributed policy enforcement and policing
for this closed community without relying on a secured-perimeter
physical network and/or extensive per-device configuration.

Another aspect is highlighted in RFC 8520[43], a standard pro-
viding “things” a means to describe who they need to talk to and
what they need to say. This would not be useful in general but, as
[43]’s introduction notes, IoT is a special case:

“These devices, which this memo refers to as Things, have a
specific purpose. By definition, therefore, all other uses are
not intended. If a small number of communication patterns
follows from those small number of uses, the combination
of these two statements can be restated as a Manufacturer
Usage Description (MUD) that can be applied at various
points within a network.”

Incorporating a MUD’s communication constraints into a schema
extends the protection they offer beyond routers, firewalls and
access points to the sending and receiving devices.

A related aspect derives from IoT’s economic context: most IoT
devices are low cost, commodity items with fixed roles like light
bulbs, switches, power plugs, etc. To be competitive, devices both
must interoperate with each other and be compatible with common
“hubs” like SmartThings, Home Assistant, Google Home, Amazon
Alexa, etc. Thus most devices use IoT-specific communication stan-
dards like Zigbee, Zwave or BTMesh that cover not just layers
1-4 but also include detailed, per-role “profiles” to ensure interop-
erability. These standards allow a schema to constrain not only
who talks to who but also what they talk about, using a run-time
binding model that requires minimal or no changes to existing IoT
device applications. A trust schema behaves much like a enrolled
device’s identity cert: it is compact, local configuration, interpreted
at runtime, not compile or link time, so it is compatible with fixed-
firmware devices and normal device firmware distribution practice.

Application

NDN forwarding

message

publication

packet

syncps
syncData

Versec-enabled transport

Figure 2: Using Versec-enabled transport

fig. 2 illustrates use of a Versec-enabled transport (or bespoke trans-
port in [55]) where application messages are exchanged with a
Versec-enabled transport whose API can be made similar or identi-
cal to current application-level message protocols. The transport
translates betweenmessages and publications that its Sync protocol,
syncps, packages into Data for ICN forwarding (more detail in § 5).
Since publication construction and signing are done after an appli-
cation constructs its message and validation and deconstruction
are done before the message is delivered, both are invisible to the
application.

2.4 The Versec language
The Versec Domain Specific Language is a declarative description
of a trust schema’s rules. The schemaCompile compiler validates
this description and translates it to a binary representation used
by the run-time library to construct and validate DCT publications.
The language provides a general framework for constructing self-
consistent, validatable names, describing constraints on both the
layout and components of Names and on the structural relation-
ships between all components of a signing chain. It also follows
LangSec [14] principles to minimize misconfiguration and attack
surface. For example, the language can only produce entities (pub-
lications, certificates, signing chains, etc.) with a fixed layout so
the run-time validation is loop- and recursion-free. All alternatives
must be explicitly enumerated so validation and construction are
take constant time and space. The language is intended to secure
relatively local, mission-focused security domains (like a home
or small business IoT network) where policy validity can be adju-
dicated via a common, local trust anchor. This means the set of
signing chains for any schema must form a DAG, a property veri-
fied at compile time and exploited to make the run-time testing for
signing-loops stateless and O(1).

Previous work on declarative trust specification languages [20,
44, 46] used logic programming formalisms like Datalog. These pro-
vide the expressiveness needed to deal with complex scenarios like
constraining inter-domain delegation but at the expense of forcing
system developers to program in an unfamiliar language and style.
Versec focuses on expressing constraints within a single trust zone.
This leads to a strictly compositional constraint system, modeled as
a directed graph of the partial order induced by the constraints
which, when expressed as an order-theoretic lattice [28], provides
the same decidability, unification and subsumption capabilities as
logic programming but with familiar Javascript/JSON-like structs
for the programming model.2

2See [13] for a brief description and [6, 8] for background.
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Versec uses a subset of the CUE language (cuelang.org) and the
CUE tutorials [7] provide a useful introduction. Versec’s subset is
tailored to describing IoT constraints. Things like optional struct
fields, default values, list and field comprehensions, regular expres-
sions, conditional fields and null coalescing have been deliberately
omitted because they introduce ambiguity that impacts schema
security, understandability and runtime performance[24, 53]. Other
CUE features like complete “types as values” support and the “.”
operator for struct field access are useful for giving Versec better
visibility into application supplied arguments and are high on the
“todo” list.

Language basics. A trust schema primarily deals with the mean-
ing and relationship of individual components of the filename-like
names of publications and certs. There are two equivalent repre-
sentations: the linearized name with component values separated
by slashes and a structure enclosed in curly braces ({...}) with the
fields given in ’tag: value’ form. The correspondence between these
two forms is established by definitions like:

#pub: /_net/_trgt/_typ/_loc/arg/_ts & { _ts: timestamp() }

which defines #pub as a six component publication name. The
strings between the slashes are the tags used to reference each
component in the structure form and in the run-time API. An
example of this usage is the component constraint following the
’&’. This says two things: the type of the _ts component in every
#pub is “timestamp” (64-bit unix timepoint in microseconds) and,
when a #pub is constructed, the current time will be put in this
component.3

The pub is specialized for particular purposes by creating deriva-
tives with additional constraints. For example, rules to describe
the relationship between lights and the switches that control them
could be:

slp: #pub & { _trgt: "light", arg: "on"|"off" }

swp: slp & { _typ: "cmd" } <= swCert
lip: slp & { _typ: "sts" } <= liCert

swCert: devCert & { _role: "switch" }
liCert: devCert & { _role: "light" }

devCert: /_net/_role/_roleId/_loc <= netCert

This creates slp (switch+light pub), an instance of #pub which is
constrained to target “lights” and accepts an argument of either
“on” or “off” from an application at run-time. The “switch” variant
of slp, swp, can publish an on or off command and requires the
publishing entity to have a “switch cert”, swCert, which confirms it
is authorized to act as a switch. Similarly, an entity can use the “light”
pub, lip, to report its on/off status (typically after a state change) if
it possesses a “light cert”. (The operator ’<=’ is read ’is signed-by’.)
The remaining three lines define cert formats. Note the _loc tag is
used in both the #pub and devCert definitions. Tag names starting
with a “_” are constrained to have the same value everywhere they
are used in a signing chain. This means the pub builder uses the
devCert’s _loc to set a pub’s _loc and the validator will always

3The syncps transport (§ 5.1) uses this as part of its replay protection machinery.

check that an incoming pub’s _loc matches the signing devCert’s.
This mechanism supports full Attribute-Based Access Control [25]
using signing chains with suitably hardened cert linkage (§ 3.1) as
a Policy Information Point.

To understand how the schema works, say a kitchen sink light
on Alice’s IoT network was enrolled with devCert

/alice/light/42/sink

and a switch near it with
/alice/switch/11/sink

The schema tells the light’s application to subscribe to publications
with prefix

/alice/light/cmd/sink

When the switch “on” button is pressed, its application calls
publish("arg","on")

resulting in the multicasted publication
/alice/light/cmd/sink/on/0x0123456789abcdef

which matches the light’s subscription and turns on the light.
More complex signing chains are discussed in § 4 for dctIoT.
In addition to the specifications for the structure of publications

and their signing certs, Versec trust schemas include specifications
for the namespace prefix and cryptographic signing/validation of
both the publications and the syncData that carry them on the
“wire” (used to denote media packets), e.g.:

#pubPrefix: _domain
#pubValidator: "EdDSA"
#wirePrefix: _ndnprefix/_domain & { _ndnprefix: "localnet" }
#wireValidator: "AEAD"

These lines specify a cryptographic signing and validation algo-
rithm from DCT’s run-time library (§ 5.1). The EdDSA algorithm is
specified for publications, requiring signing by a private key and
validation with its public key. Publications are contained within
a syncData (an NDN Data) using AEAD [1] to provide confiden-
tiality via AES-128 symmetric encryption. The run-time library
automatically handles cert distribution and, when confidentially is
specified, automatic generation, rotation and secure distribution of
the symmetric group key (see § 5.1 distributors). Versec explicitly
prohibits applications from use of integrity-only signing as this
does not enforce the trust zone.

3 IDENTITY BUNDLES
To participate in a trust zone, an entity needs a verifiable copy
of the zone’s trust anchor, signed trust schema and an identity
signing cert (public key cert that includes private key) complete
with its signing chain (public certs only), which always has the
zone’s trust anchor at the root. Only an entity’s own signing cert
is included as the public signing certs of others are obtained and
validated (using the common trust schema and anchor) at run-time
through use of a syncps-based cert collection (§ 5). As well-formed
certificates and identity bundle deployment are critical elements
of the architecture, this section describes certificate requirements
and the construction and installation of an identity bundle. DCT
includes helper functions to create certs and bundles. Current and

https://cuelang.org/
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emergent industry best practices provide a range of approaches for
secure installation and update of private keys; as much as possible
our deployment plans exploit those (§ 3.2 and § 5.3).

3.1 DCT Certificates (Certs)
Employing a SDSI-like architecture with a single, local, trust root
cert (trust anchor) simplifies trust management and avoids the
well-known certificate authority (CA) federation and delegation
issues (there are no CAs; just the local trust anchor). This and other
weaknesses of the X.509 architecture are summarized at [10] from
original references including [30, 37]. DCT certs are generated and
signed locally (for the house network) so there is no reason to ag-
gregate a plethora of unrelated claims into one cert (avoiding the
Aggregation problem[10]). DCT cert’s one and only Subject Name
is the name of the NDN Data object that contains the cert as its
content and neither are allowed to contain any optional informa-
tion or extensions. All certificates are created with a lifetime; local
production means cert lifetimes can be just as long as necessary
(as recommended in [29]) so there’s no need for the code burden
and increased attack surface associated with certificate revocation
lists (CRLs) or use of on-line certificate status protocol (OSCP). Key
roles that require longer lifetimes, like device keys, get new certs
before the current ones expire and distribute those through DCT. If
there is a need to exclude previously authorized entities from the
trust zone, there are a variety of options. The most expedient is
via use of the AEAD wireValidator by ensuring that the group key
maker(s) for a trust zone (§ 5.1) exclude that entity from subsequent
symmetric key distributions. It is also possible to distribute a new
trust schema and signing identities (without changing the trust
anchor) using remote attestation via the TPM.

Signing certs are accompanied by their full signing chains, both
when installed in identity bundles and when an entity publishes
its signing identity (without the private key, of course) to the cert
collection. Every signing chain has the same trust anchor at its
root. Without the entire chain, a signer’s right to issue publications
cannot be validated. DCT cert validation behaves as if the rights
and properties of every cert in the signing chain were concatenated
for each publication the chain signs. For this model to be well
founded, each cert’s “key locator” must uniquely identify the cert
that actually signed it. This property ensures that each locator
resolves to one and only one signing chain. The literature shows
that name-based locators like X.509’s "Authority Key Identifier"
and "Issuer" are open to substitution attacks [11, 32, 47]. DCT’s key
locator is a thumbprint, a SHA256 hash of the entire Signer’s NDN
Data packet (name, content, key locator, and signature), ensuring
that each locator resolves to one and only one cert and signing
chain.

3.2 Making and installing identity bundles
The DCT toolkit provides utilities that assist in creation of identity
bundles, including one that creates a trust anchor [61]. A trust
schema that passes schemaCompile checking can be output in bi-
nary format, then embedded in a certificate signed by the trust
anchor. The make_cert utility can create all the required certs and
make_bundle will make a bundle from given certificates. Bundles
contain, in order, the trust anchor, the trust schema, and the signing
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Figure 3: Deploying identity bundles

chain for the entity (private signing keys are included only for a
signing identity). As discussed earlier in this section, bundles do not
contain signing certs of other devices; new trust zone members are
added dynamically. The private key(s) of the bundle will be secured
using the Trusted Platform Module, the best current practice in
IoT [18, 34–36, 40, 68, 72, 74]. Identity bundles are intended to be
installed securely when a device is first commissioned (out-of-band)
for a network: 1) the bundle, with the exception of private signing
key(s) is installed as a file and 2) private key(s) are installed via
the TPM. fig. 3 illustrates this on the left hand side. An authorized
configurer (e.g., a homeowner for home IoT) adding a new device
uses TPM tools to secure the private signing key(s) and installs
the rest of the bundle file in known location before deploying the
device in the network.

For any actual deployment, good key hygiene using best current
practices must be followed e.g., [45, 58]. For dctIoT deployment, a
small application manager (appMgr) with will be programmed for
two specific purposes. First, it is registered with a supervisor [17] (or
similar process control) for its own (re)start to serve as a bootstrap
for dctApp. Second, it has access to the TPM functions and the
ability to create “short-lived” (~hours to several days) public/private
key pair(s) that will be signed by the private key of the installed
identity cert using the TPM, which will happen at (re)start and
at the periodicity of the cert lifetime. Since the signing happens
via requests to the TPM, the key cannot be exfiltrated. At (re)start,
the signing cert is added to the stored bundle file (the entire chain
should be rechecked for validity) and passed to dctApp as it is
invoked. For periodic signing cert updates, only the new cert needs
to be passed to the already running dctApp as the rest of the bundle
does not change. dctApp uses the library’s cert distributor to publish
its new certs. (See right-hand side of fig. 3.)

In our development environment, an identity bundle is given
directly to an application via the command line and the TPM is not
used. Sample applications in the repository [60] are written for the
development environment. All DCT certs have a freshness period
and an validity period which currently default to one hour and
one year, respectively. Trust anchors, trust schema, and the TPM-
secured signing identity are “long-lived” certs where that lifetime
should be application- and deployment-specific, but is expected
to be ~year(s). Another key pair is made just before a certificate
expires so the new certificates can be distributed. Discussion of
updating trust schemas and other certificates over the deployed
network is deferred to § 5.3. Changing the trust anchor is considered
a re-commissioning and is not done over the network.
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4 A HOME IOT TRUST SCHEMA
All the home IoT platforms we surveyed4 use a structured abstract
profile to represent devices and their capabilities. Devices can have
multiple capabilities, e.g., a lamp has a switch and a light. Common
devices like motion-sensing lamp fixtures, doorbell cameras, and
electronic door handlesets might include capabilities like: light, sen-
sor, switch, lock. Capabilities have attributes which represent state
information and commands which are the ways in which the at-
tributes can be controlled. Attributes are as simple as “on” or “off” or
might be a range of values, as for a temperature sensor. Commands
can toggle an attribute or set an attribute. Events let a capability
report a state transition, e.g., from off to on or into a particular
temperature range. Most IoT platforms represent their capabilities
and devices in standard device profiles, well-defined structured
objects. Individual IoT platforms have a library of standard device
profiles that specify common capabilities (e.g., switches, cameras,
locks) and provide a template for devices with custom capabilities.
Although these concepts are named differently across IoT platforms,
the functionality is quite similar and there are implementations that
translate, or map, between platform representations (particularly
in Home Assistant). The unification of these disparate but similar
data models is an active area of standards work, e.g., the JSON rep-
resentations of One Data Model, W3C IoT Community Group, or
Matter [3, 15, 16]. Though mappings exist, a single standard library
would be particularly helpful for (semi)automated trust schema. In
the meantime, dctIoT publications are constructed to accommodate
functionality of the major platforms.

Though IoT devices have well-specified capabilities there is no en-
forcement mechanism focused on restricting devices to only act within
those capabilities. When security relies on a network perimeter’s
access control or on encrypting the channel between two commu-
nicating devices, the approach can fail if a single internal device is
compromised, leaving networks open to exploits based on hijacking
a single lightbulb, camera, or other device and issuing commands
that should never come from such a device. It is generally difficult
or impossible to constrain an authorized user to functions relevant
to their role, e.g., homeowner, child or guest. Descriptive models of
devices and capabilities couple with desired policy rules can be used
in a Versec trust schema, dctIoT.trust, and deployed in DCT-based
applications to address these issues.

4.1 Specifying dctIoT publications
Following [55], dctIoT Names are organized hierarchically, start-
ing with a component that identifies the particular network (e.g.,
houseNet) and end with three components that are used for replay
prevention, segmentation/reassembly, and identification.msgID is a
unique ID for the application level message, sCnt indicates whether
this is a single publication message and if not gives its k out of n
segment value, and msgTS is the timestamp when the message was
created. The basic Name format is:

<networkID><...><msgID><sCnt><msgTS>

4SmartThings, Web of Things, Zigbee Clusters, Zwave, BTmesh, and HomeAssistant.
These generally use different names for the same concepts. The description here is
most similar to SmartThings [2] but we attempt a general format that can map to all
major approaches.

Figure 4: Map IoT object structure to Name components

where the components that make up <...> are specific to this appli-
cation. Figure 4 shows a structured IoT object description of what
IoT applications need to communicate about. A device can report
on the value of its capability attributes via arguments, a particular
capability can accept commands with particular attributes, and a
capability can report on such events as a temperature exceeding
a threshold. Publication name components make these capabili-
ties, actions, and roles visible to ensure that devices only report
on attributes that they can observe (normally, their own capability
attributes) and that commands only come from devices and roles or
capabilities with permission (e.g., the homeowner can use a phone
to send a command to a lock but a doorbell camera can never pub-
lish a command). Publication names both communicate application
information and restrict communications to trust schema permit-
ted roles and capabilities so that individual devices reject illegal
publications.

The application-specific portion of dctIoT Names is organized
to reflect the data-centric pub/sub approach where synchronized
collections contain sets of Data of the same topic (facilitating a
publisher-agnostic many-to-many model) rather than a set of Data
from the same publisher (a one-to-many model). Devices need
to subscribe to and publish in collections that are distinguished
by their capabilities, so capability is the first component of this
application-specific portion. The next component is topic which
indicates what aspect of the capability definition is addressed in this
publication (attribute, command, or event). The next component
is used to distinguish which capability and topic the publication
concerns, denoted by location. Location has a broad definition; it
can indicate a room or floor in a building, a particular device or class
of devices, a network, or a designator local to keep publications
from leaving the device. The arguments component is used for
additional information that may be required for this topic.5 Finally,
a component for the issuer of the publication provides a field that
can contain the role identifier of the originating entity, the device
where the publication originated, or a combination of the two. The
right hand column of fig. 4 lists publication components opposite
the object elements that appear or may appear in them. The portion
of the publication Name (<...> above) specific to the dctIoT is at the
bottom.

5Future versions of the trust schema language and compiler will permit structures in
components.
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4.2 dctIoT trust schema
Once defined, a publication format is used in a Versec trust schema,
e.g., the dctIoT schema of fig. 5. Three distinct publication formats
are defined (denoted with a leading “#”): Report, tagCommand, and
prgCommand. Components given without a leading “_” are param-
eters supplied when the run-time library is called to construct a
publication. Components with a leading “_” must have the same
value everywhere in the signing chain so are used to propagate
information from certs to publications such as the _cap (capabil-
ity) field in the Report; i.e., its _cap may be obtained from a cert
anywhere in the signing cert and _cap must be the same through-
out the signing chain. The origin component specifies a function,
sysId(), that will be called to set the component when a particular
publication is constructed.

In the example, there are two capabilities, light and switch, and
each has two basic states: “on” or “off.” Publications derived from
Report can give the state for light or switch (lsState, requiring
signature by a cert with capability light or switch) or report the event
of a light changing state, either off to on, or on to off (lightEvent,
requiring a a cert with capability light). The specification for Report
ensures that a capability can only publish events and attributes
about itself by making use of its unique devId from its device cert.
The devType and devTag are not unique; devType can be used to
specify a type of device (“deskLamp” or “ledStrip”) while devTag
can be used to set up designators for grouping devices that are not
necessarily similar, e.g., “livingRoom” or “sink”.

This trust schema limits lights to signing publications with topic
event or attribute which means that a command from a light is
illegal. The rules say that a switch can publish the current value
of its single attribute (on or off) and can publish a command for
the light capability with location indicator that is taken from the
devTag field in its capability certificate, allowing it to be paired
with a light that has been configured with the same devTag, e.g., set
devTag to be a single location like “sink” or a room like “kitchen.”
A prgCommand can have any location component and is used to
create lightOwnCmd that lets an ownerCert sign any (properly for-
matted) publication with the light capability. This is a role certificate
that an owner might have on a mobile device to remotely control
lights. A more restrictive role certificate could limit the capabilities
or locations in the format of legal publications. The wireValidator
and pubValidator lines specify that publications cryptographically
signed and validated using an EdDSA algorithm. syncData packets
are AEAD signed and encrypted for confidentiality.

Each device on-boarded to houseNet has innate capabilities and
is configured with certificates for those capabilities, signed by the
device’s cert, authorized for use in this network.

schemaCompile is used to check dctIoT.trust for missing certs
and syntax issues and to make a binary version of the trust schema
if it passes checks. The diagnostic output (with a verbose option) is
shown annotated in fig. 6. Example schemas for dctIoT [60] have
binary schema output sizes of 300-600 bytes and schema certificates
of fewer than 900 bytes. Identity bundles are ~1400 bytes.

5 IMPLEMENTATION
DCT provides the library used to implement dctIoT ’s Versec-enabled
transport (see fig. 2). An application-specific shim hides details of

_net: "houseNet"
// Publication definition
#Report: _net/_cap/_devId/topic/args/_origin/mID/sCnt/mts & { _origin: sysId() }
switchCert: capabilityCert & { _cap: "switch" }
lightCert: capabilityCert & { _cap: "light" }
lsState: #Report & { topic: "attribute", args: "on"|"off" } <= switchCert | lightCert
lightEvent: #Report & { topic: "event", args: "on2off"|"off2on" } <= lightCert
// For a paired by _devTag (e.g., "sink") switch and light
#tagCommand: _net/cap/_devTag/topic/args/_origin/mID/sCnt/mts & {

topic: "command", _origin: sysId()
}
lightTagCmd: #tagCommand & { cap: "light", args: "on"|"off" } <= switchCert
// A programatic command can go to any 'loc'
#prgCommand: _net/cap/loc/topic/args/_origin/mID/sCnt/mts & {

topic: "command", _origin: sysId()
}
lightOwnCmd: #prgCommand & { cap: "light", args: "on"|"off"|"report" } <= ownerCert
capabilityCert: _net/_devTag/_cap/_keyinfo <= deviceCert
deviceCert: _net/_devType/_devId/_keyinfo <= configCert
ownerCert: roleCert & { _role: "owner" }
roleCert: _net/_role/_roleId/_keyinfo <= netCert
configCert: _net/"config"/confId/_keyinfo <= netCert
netCert: _net/_keyinfo
// Publication prefix and validator type
#pubPrefix: _net
#pubValidator: "EdDSA"
// Prefix used for syncData (NDN Interest/Data)
#wirePrefix: _ndnprefix/_net & { _ndnprefix: "localnet" }
#wireValidator: "AEAD"
// components are KEY, keyID, issuerID, and version
_keyinfo: "KEY"/_/"dct"/_

Figure 5: dctIoT.trust example

the transport and exposes only necessary information to the ap-
plication, an approach we first employed in [55, 56] and have also
used in [42]. dctIoT’s shim implements a message-based pub/sub
(mbps) API loosely based on the widely-used (in IoT) MQTT applica-
tion protocol. This provides a familiar interface for developers and
for adapting applications as well as being well-suited to ICN com-
munications. In mbps, as in MQTT, applications communicate by
publishing and subscribing to hierarchically structured topics where
publications carry commands, status and signal events. Publishers
do not have specific knowledge of subscribers and publications are
made available asynchronously. fig. 7 shows the distinct modules
used to implement dctIoT, its mbps shim (the only custom module)
and DCT library modules which mbps uses to package and unpack-
age application messages into publications, to ensure that invalid
messages are not passed to applications and no invalid publications
are formed. Publications are added to or received from a collection
via the Sync protocol syncps [55] which packages them into (and
retrieves them from) syncData for the NDN forwarder (see [60]).

5.1 DCT library
Modules of DCT, grouped by category, with relevant information:

syncps in its original version [55] implemented a Sync collection
providing unacknowledged delivery and any-to-any communica-
tions. Each syncps announces the publications it currently has in
its collection by sending an Interest containing a Difference Di-
gest [31, 51]. Difference Digests solve the multi-party set-difference
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Publication #Report:
  parameters: topic args mID sCnt mts
  tags: /_net/_cap/_devId/topic/args/_origin/mID/sCnt/mts
  signing chains:
    chain 0: lsState <= switchCert <= deviceCert <= configCert <= netCert
                lsState[1]==switchCert[2]  lsState[2]==deviceCert[2]
    chain 1: lsState <= lightCert <= deviceCert <= configCert <= netCert
                lsState[1]==lightCert[2]  lsState[2]==deviceCert[2]
    chain 2: lightEvent <= lightCert <= deviceCert <= configCert <= netCert
                lightEvent[1]==lightCert[2]  lightEvent[2]==deviceCert[2]
  templates:
    /"houseNet"/_cap/_devId/"attribute"/args/sysId()/mID/sCnt/mts { switchCert lightCert }
      [ args: on | off ]
    /"houseNet"/_cap/_devId/"event"/args/sysId()/mID/sCnt/mts { lightCert }
      [ args: on2off | off2on ]

…
Certificate templates:
  cert ownerCert: /"houseNet"/"owner"/_roleId/"KEY"/_/"dct"/_
  cert lightCert: /"houseNet"/_devTag/"light"/"KEY"/_/"dct"/_
  cert switchCert: /"houseNet"/_devTag/"switch"/"KEY"/_/"dct"/_
  cert deviceCert: /"houseNet"/_devType/_devId/"KEY"/_/"dct"/_
  cert configCert: /"houseNet"/"config"/confId/"KEY"/_/"dct"/_
  cert netCert: /"houseNet"/"KEY"/_/"dct"/_

40 strings, 258 bytes (4 overlaps, 247 bytes in stab)
binary schema is 601 bytes

Parameter values required 
to build this publication

Signing chains required 
for each pub use case

    This template can be signed by chain 0 or 1

Pub builder puts origin’s system Id here

NDN cert conventions require these 
components but the schema doesn’t 
supply tag names to reference them

Legal “args” values for this template item

Leading “_” in name
means must have the same value in pub &  certs

Tag names used to reference 
components of pub. E.g., 
“if (pub["args"] == "on") …

Figure 6: Annotated verbose output of schemaCompile for dctIoT.trust

sigmgrs distributorsschema

mbps (shim)

syncps

manages message-passing with app

manages packing and unpacking
Publications, Collection synchronization

parse trust schema, build,
validate and sign Publications,

manage associated functionality

Figure 7: Versec-enabled transport for dctIoT

problem efficiently without the use of prior context and with com-
munication proportional to the size of the difference between the
sets being compared. syncps has to manage active and inactive
publications to know when and if to communicate them to peers
and subscribers, but it knows nothing about the format or seman-
tics of publications. Upcalls from syncps to other modules provide
validation and expiration information for publications as well as
validation and signing of syncData. DCT’s version of syncps has
some improvements and bug fixes and adds the ability to acknowl-
edge when publications have reached their collection if an optional

callback handler is provided. A single instance of a syncps manages
a single collection.

schema modules read and parse a binary trust schema, provide
certificate management to validate and locally store required certifi-
cates, and build and validate publications based on the trust schema.
Validation and signing makes use of sigmgr modules and certificate
management uses distributors modules.

signature managers (sigmgrs) implement any required sign-
ing and validation, utilizing libsodium [5] for cryptographic func-
tions. sigmgrs implement integrity signing (based on both RFC7693
and SHA256), key-based signing (EdDSA), and symmetric key-based
encryption (AEAD, additional encrypted authenticated data, only
used on syncData packets). Additional approaches to certifying
trust can be added by implementing a new sigmgr.

distributors maintain synchronized collections of certificates
and keys for a trust zone (thus each distributor has its own syncps).
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One type of distributor maintains the collection of signing certifi-
cate chains, where entities publish when they join the trust zone
or are given new certs. The signing certs of all trust zone members
are located in the collection, obviating the need for external on-line
certificate repositories. The trust anchor and signing chains in the
trust schema are used to validate all received certificates. When
an application starts, it publishes its signing chain and waits for
confirmation that at least one other entity has acquired it (done
through syncps) before the application can start communicating.

Another distributor type periodically makes and securely dis-
tributes symmetric keys for all the signing identities (certs) found
in the signing cert collection and is only invoked when AEAD is
used to enforce data privacy. When used, it starts after signing cert
publication is confirmed and before application communications
begins. Certain entities (as few as one or as many as all) are desig-
nated as having the potential to make these keys and, if more than
one, initially contend to become the group key maker6 after which
that entity periodically makes a new key and packages it into a
publication where the key is encrypted multiple times, using the
public key from all the valid signing certs, i.e., there is an encrypted
version of the symmetric key for each member entity. Members of
the trust zone decrypt their version and use with the AEAD sigmgr.

5.2 mbps: message-based pub/sub shim
Pub/sub has over 30 years of history but has becomemore important
in recent years as it is applicable to a range of modern problems
from data center tasks to IoT; with this potential in mind,mbps was
designed to be more general-purpose than our previous shims. In
MQTT, assured delivery semantics7 are outside the basic pub/sub
primitive; specific styles of QoS, approaches to long-term storage,
and other functionality are layered on top. mbps has similar goals,
providing a simple API that hides network layer and security details
and offers two levels of message QoS: a default unacknowledged
delivery and a confirmation that the publication has reached at least
one other member of the collection. Applications create an mbps
instance and pass it the identity bundle filename. Applications can
use the following mbps methods:

connect(successCB, <opt>failureCB): Performs set up (if any)
necessary to allow communications to start. The method of MQTT
that creates a connection to a Broker is “hijacked” here to connect
to the collection used for communications (e.g., signing key distri-
bution is carried out). Upon success, the work of the application
starts.

publish(msg, args, <opt>confCB): Publishes the given message
content and returns a unique message ID. If a confirmation callback
is included, mbps invokes confCB with an indicator of success or
failure of the specific message’s publication.

subscribe(handler): subscribes to all the topics in this mbps
collection (set by the pubPrefix in the designated trust schema). A
received message’s underlying publication(s) is validated before the
handler is invoked.

run(): once application set up is finished, this turns over control
to the transport.

The API simplicity is shown in this application snippet:

6Rudimentary, though functional; more sophisticated approaches are possible.
7beyond its “at most once,” “at least once,” and “exactly once” message QoS

void msgPubr(mbps &cm, std::vector<uint8_t>& toSnd) {
... //prepare arguments
cm.publish(toSnd, a); //load arguments in a

}
static void msgRecv(mbps &cm,

std::vector<uint8_t>& msg, const msgArgs& a) {
... //do something with msg

}
int main(int argc, char∗ argv[])
{

mbps cm(argv[optind]); //make cm, pass identity bundle
cm.connect(

[&cm]() { //successful connect
cm.subscribe(msgRecv);

... //prepare toSnd
msgPubr(cm, toSnd); });

cm.run();
}

5.3 Security information and implications
An important feature of this architecture is that the security used
for a particular application can be changed by creating a new trust
schema and installing a new identity bundle with no changes to
application binary. The examples at [60] can be used to explore this
feature through comparing its three trust schemas: mbps0.trust en-
sures publications and syncData are cryptographically signed with
an entity’s signing key (EdDSA), mbps1.trust adds the publication
structural role-based requirements (as in fig. 5), and mbps2.trust
adds AEAD encryption to the syncData (mbps2.trust differs by
changing only the wireValidator of mbps1.trust to AEAD). This
illustrates that Versec can initially be used solely to enforce signing
and certificate distribution in a trust zone and later progresses to
more fine-grained access control.

Every publication and syncData (i.e., all communications) must
be signed by a cert that proves, according to the trust schema, the
publishing entity is allowed to say what it said. The trust schema
and every cert valid under the schema are signed by the trust anchor,
directly or through a signing chain. Every entity is enrolled by
giving it an appropriate signing cert (e.g., ownerCert or deviceCert
and capabilityCert(s) in fig. 5 with private key) and its signing
chain. Enrollment and signing chains are structured so as to prevent
privilege escalation. For example, in fig. 5 devices are given the
private keys of their capabilities but not the private key of their
device cert since that would allow them to expand their capabilities.
The signing chains are also designed so that while the ephemeral
private keys that sign publications generally need to be kept in the
publishing process’s memory, higher value private keys that sign
other keys can be kept in and used from a secure enclave like a
TPM to prevent exfiltration.

The bootstrap identity bundle gives each entity the trust anchor,
the schema, and the full signing chain of its signing identity cert(s)
in a few kilobytes. These give every entity the means to prove
to itself and any other member of its trust zone that it is validly
configured. DCT’s model requires that the original publisher of
any object ensure that all certs and schemas needed to validate an
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object have been published before the object is published. This is
enforced by requiring that received syncData or publications with
any missing signing dependencies must be considered unverifiable
and silently discarded. This is in contrast to security architectures
that store data packets and query networks for their signing keys,
a clear attack opportunity that grows out of the “be liberal in what
you accept” philosophy of today’s Internet. We adopt the Language-
Based Security [14] field of work recommendation that protocols
“be definite in what you accept” to ensure the integrity of trust zones.
DCT’s run-time library handles this automatically by putting the
entity’s signing cert and bootstrap configuration information into
an application-local cert collection and using the cert distributor
(§ 5.1) to sync that collection with all the peer entities: initial signing
chain publication is completed at start up and thereafter the cert
distributor keeps the collection in sync. When a new, properly
configured device (whose type is defined in the trust schema) is
attached to the network to join the trust zone, it is sufficient for it
to join the the signing certificate collection.

Signing certificates used by applications should be updated pe-
riodically (as described in § 3.2), then published through the cert
distributor without the need for application restart. Trust schemas
may change with addition of new types of devices or users, so an
over-the-air update will be explored. The long-term private signing
cert whose key stored by the TPM should be updated using existing
and emergent best practice [38, 40]. However acquired, a validated
new trust schema must be updated in the identity bundle and the
appMgr (§ 3.2) notified to restart the application.

5.4 Performance experience
Security architectures for IoT devices have typically been concerned
with the lower resources of such devices when contrasted to general
purpose computers. Today’s home IoT devices are not the incapable
elements (or “motes”) of sensor networks. In particular, the proces-
sors in lightbulbs have been used to take over entire home networks
[23] and thus, it is both reasonable and prudent to regard home IoT
devices as capable computing elements.

Configuration data is relatively compact: The certificates created
for [60] have a median size of 256 bytes (mean 254, SD 7.4, min
239, max 260) with bundle median and mean sizes of 1326 bytes
(SD 8.4, min 1315, ma 1337) and 823-828 byte signed schemas. The
substantially more complex schema of [42] has a median cert size of
247 bytes (mean 251, SD 8.5, min 235, max 262) and bundle median
and mean of 2307 bytes (SD 1.2, min 2307, max 2310) and a 1253
byte schema. Measured performance (over 1000 runs) for app2 of
[60] using EdDSA signing of publications and AEAD encryption of
syncData is summarized in table 1.

One-way delay IPv6 multicast UDP message delivery time, mea-
sured from publication creation time to a subscribing application’s
reception (i.e., full DCT stack plus network traversal).

Request-Response IPv6 multicast UDP message delivery time,
measured from the Request publication creation time to the Re-
sponse publication’s reception by the requesting application (i.e.,
full DCT stack plus network traversal).

6 RELATEDWORK
Two important building blocks of our architecture are a shared trust
schema that is integrated into the communications model, allowing
fine-grained role permissions, and a Sync protocol, syncps, that uses
the NDN Interest and Data primitives to enable collection-based
communications. These building blocks do not appear in other ICN
security architectures, but certain elements of our approach are
common to other work.

TheManufacturer Usage Description (MUD) work [33, 43] shows
that IoT device characterization can be used to describe communica-
tions requirements which can in turn be used by network elements
to constrain how they communicate. The implementation approach
of [33] is focused on in-network access control of unchanged, legacy
devices where enforcement is via access control lists in network
elements like routers, switches and firewalls, a traditional perimeter-
based defense. In contrast, our approach assumes devices that can
deploy trust schema-based applications and creates a zero trust
community on any physical network along with easily deployed
encryption and the communication efficiency advantages of ICN.

The process of enrolling a device into a network by provisioning
it with an initial secret and identity in the form of public-private
key pair and using this information to securely onboard a device
to a network has a long history, including in ICN [27, 66]. The
approach we outlined in § 3.2 is just one of many ways to provision,
making use of current best practice. Key differences from these
earlier approaches is that a dctIoT identity constrains actions rather
than simply conveying membership. In [27], onboarding is a one-
to-one transaction between a device and a controller or a gateway,
while dctIoT publishes and validates signing chains in a distributed
collection to onboard, a many-to-many transaction. The practice
of encrypting a group symmetric key with individual public keys
is widely used in ICN, e.g., [27, 48, 66, 76]. Marxer [48]suggests
publishing new group encryption keys in “contexts” where the new
key is encrypted by public keys of the members which is similar to
dctIoT’s group key publication, signed by the keymaker, that carries
a list of the current group key encrypted by each member’s public
key.

The NDN-based building management system of [66] is also
designed for an environment that does not rely on physical net-
work segregation for security. At installation, devices get their
specific namespace, a trusted public key (trust anchor) and an iden-
tity (key pair) and possibly symmetric key(s). Its trust model has
some similarities but relies on a manager daemon separate from
the applications to enforce access via lists of namespaces and per-
mitted user identities and identities with permitted namespaces are
external to the communication model of the applications. Lacking
an integrated trust schema where validity (rather than permission)
is expressed in capabilities and roles that can be extracted from
certificates, these lists must be updated with any new identities and
propagated to all enforcement points.

A very different architectural use of schemas in ICN, Marxer’s
differential access to stored data [48], proposes using a schema in a
capability document and capability lists defining what principles
(or entities) can have access to certain data.
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CPU
(all times in 𝜇𝑠)

One-way delay Request-Response
median min 75% median min 75%

2015 2GHz Embedded Nehalem 850 249 871 1390 456 1430
2012 3.5GHz E5 Xeon 315 265 333 604 426 649
2014 4GHz Core-i7 280 229 287 585 372 606

Table 1: Performance on various (older) CPUs

7 SUMMARY AND FURTHERWORK
This paper presents an architecture and toolkit for creating ICN
Zero Trust zones using Versec, a new approach to trust schemas and
their usage. Trust schemas are distributed as certificates and used by
an efficient run-time policy enforcement layer integrated with ap-
plication communications transport, thus a rigid set of conventions
about “who gets to do what to which” is enforced while making
secure application writing easier. This approach is applied to home
IoT to create a secure platform that presents a simple pub/sub mes-
sage interface to applications. An initial version of the platform has
been coded; refinements and additions are in progress, including
more expressiveness for the trust schema language, optimizations
to streamline communications, and approaches to connecting re-
mote trust zones. Creating trust schema templates for a wide range
of IoT devices and translating a large number of IoT object defini-
tions into dctIoT names represents a large undertaking and events
may lead to some consolidation in IoT data models, so we intend to
start “narrow” with a fully functional prototype containing a few
useful, representative elements.

Using ICN security features to solve real-world problems is in
its infancy. This approach is a significant step toward making trust
specifications more usable, straightforward and secure while mak-
ing information-centric application creation easier. Though focused
on IoT, at least some aspects of this approach should be applicable to
areas such as vehicular communications, military and first respon-
der communications, and a host of energy related applications.8 The
toolkit is open source precisely in order to aid the work of others.
Open areas that could aid in widespread usability of this approach
include automatic mapping of IoT (or other application) structured
descriptions into templates for mbps and Versec and other aids to
expressing trust rules in Versec. In particular, a template for home
IoT (or another application) could be used to configure a local trust
anchor and different roles and permissions as desired by the admin-
istrator. Our group key distributor has a very simple algorithm for
electing a key maker among eligible entities of the trust zone; more
sophisticated versions might include fault-tolerance. Novel meth-
ods for securely distributing and installing trust schema updates to
devices may be possible. The appMgr and approach described in
§ 3.2 have not yet been implemented and there certainly may be
more innovative approaches possible. Although mbps implements
a general pub/sub API, other APIs for Versec-enable transports
might be possible and useful for other communications models, e.g.,
streaming, conferencing, virtual reality.

8DCT is being used in a secure transport for ongoing research under a DOE funded
project.
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