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ABSTRACT 

Future satellite-based packet networks (FSPN) will 
utilize a request/grant MAC protocol referred to as 
Demand Assigned Multiple Access (DAMA) for uplink 
allocations.  DAMA is conceptually similar to 
Bandwidth-on-Demand (BoD) protocols used in 
terrestrial networks, such as 802.16 and DOCSIS, which 
flexibly share total bandwidth according to actual loads 
and usage policies.  However, unique characteristics of 
FSPN result in challenges not faced by these protocols.  
DAMA request/grant cycles are on the order of seconds 
instead of tens of milliseconds. This makes the process 
one of prediction of future needs based on past traffic 
loading measurements rather than grants for specific 
packets.  Over a decade of packet traffic study has 
shown the difficulty of fine-grained load prediction. If 
these requests are heavily relied upon for grant 
allocations, load prediction errors can result in unfair 
and non-deterministic terminal allocations that may 
violate terminal SLAs. This study assesses the 
predictability of packet traffic at FSPN request/grant 
timescales and compares the performance of DAMA 
approaches of varying request granularity, starting from 
coarse measures of inactivity and activity and focusing 
on meeting SLA commitments. The complexity of fine-
grained approaches with respect to any potential gain is 
also considered.  Rejecting fine-grained approaches to 
load prediction is shown to result in more deterministic 
DAMA performance and lower overhead while 
achieving efficient use of shared RF resources. 

INTRODUCTION 

The FSPN DAMA scheme is structured as a request-
and-grant MAC layer, like 802.16 or DOCSIS. As 
shown in Figure 1, terminals send rate requests to the 
satellite DAMA controller based on demand and the 
satellite controller responds with radio frequency (RF) 
resource allocations that provide a specific average data 
rate for the uplink.  An important difference between 
FSPN DAMA and other terrestrial BoD protocols is the 
request/grant process is much longer due to constraints 
imposed by GEO propagation, Media Access Control 
(MAC) layer delays, processing for protected waveforms 
and support for disadvantaged communications-on-the-

move (COTM) terminals.  With epochs on the order of 
500 milliseconds, total response time of around 2 
seconds is optimistic for FSPN.  This lag between the 
time traffic measurements are taken at the ground 
terminal and when the corresponding allocation goes 
into effect renders the simple, efficient BoD model 
where a packet of n bytes arrives and is buffered while a 
request for n bytes of resources is sent unworkable.  At 
these lag times, buffering delays would be unacceptable, 
thus terminal requests become predictions of terminal 
needs in the future.   

 

Figure 1 - FSPN DAMA Request / Grant Timeline 

Ideally, precise and accurate predictions of what a 
terminal will need each epoch would allow DAMA to 
make allocations that meet SLA commitments while 
maximizing overall resource efficiency. However, 
precise prediction of packet traffic arrivals over these 
timescales is not possible in most cases. Many previous 
studies have shown that the bursty nature of Internet 
traffic results in high or near infinite variability of 
arrivals.  This makes it improbable that any FSPN 
DAMA can make allocations that are both accurate and 
precise in matching terminal demand.  Prediction errors 
can lead to either over-allocations, reducing resource 
efficiency or more importantly under-allocations which 
can result in performance degradation and SLA 
violations. They also interfere with providing predictable 
and stable service to the terminal user. 
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Despite this barrier to precise statistical prediction, there 
are two simple traffic loading states that tend to persist at 
the FSPN DAMA timescales, inactivity and activity.  
That is, active (terminals with traffic loading over some 
minimal threshold) or conversely inactive conditions are 
likely to persist over the 2 second request/grant cycle 
and thus are relatively good, though coarse, predictors. 
Prediction errors are confined to the transition states 
which vary by terminal aggregation.  DAMA resource 
efficiency is realized using this metric of active vs. 
inactive by making resources not used by inactive 
terminals available for other terminals that are active.  
As this study shows, a DAMA approach that uses this 
simple metric provides for accurate and stable 
allocations that support terminal SLAs with low relative 
complexity. To improve overall resource efficiency 
further, the possible use of additional granularity in the 
load prediction used by DAMA is systematically 
examined.  Gains in resource efficiency however, must 
be weighed against any negative effects on SLA 
compliance caused by increased prediction errors and 
increased complexity of these approaches.  

This study first analyzes predictability of packet traffic 
at the target timescales, focusing on less aggregated 
traffic expected to be typical of many smaller FSPN 
terminals.  A correlation analysis is presented that 
provides a quantitative assessment of the ability to 
predict traffic loading for several types of common 
applications.  Next, a range of possible DAMA request 
strategies are presented from those that minimize 
reliance on traffic prediction to those that attempt fine 
grained prediction.  Finally, simulation-based data is 
presented assessing the performance of several types of 
DAMA request strategies with varying traffic prediction 
granularities.  Each scheme is assessed based on a 
variety of evaluation criteria defined in this study. 

TRAFFIC PREDICTABILITY 

The ability to predict loading several 500 ms epochs into 
the future would offer obvious advantages to any 
DAMA strategy by allowing terminals to precisely 
request what will be needed to satisfy demand.  Internet 
traffic has been shown in many studies, including [1], to 
exhibit long-range dependence and self similarity, 
meaning it has memory or dependence over long 
timescales and is bursty with infinite variability.  Long-
range dependence does not imply predictability over 
short timeframes as is discussed in [3].  Traffic 
unpredictability is indicated by the very large or infinite 
variance found in samples.   
 

Previous studies, e.g. [2], have shown that in order for 
linear prediction models (commonly proposed for 
DAMA) to work effectively, there should be relatively 
strong correlation between values of the time series at 
the lag time of interest (in our case about 2 seconds). 
Correlation analysis also gives insight into how well 
more complex and computationally intensive non-linear 
prediction models, such as neural networks, will 
perform.  To quantify the correlation between traffic 
arrivals 4 epochs apart, the number of bytes arriving in 
each epoch was compared to the number arriving 4 
epochs later for different types of packet traffic. 
Studying time series correlation can provide quantifiable 
evidence of the ability to do accurate fine-grained 
predictions, independent of the specific linear prediction 
model chosen. 
 
The predictability of packet traffic was studied for 
terrestrial network traces of aggregated WAN links as 
well as Ethernet LAN segments in [2, 4].  In [2], packet 
captures from production networks are binned over 
certain non-overlapping time intervals and an 
autocorrelation function is computed to determine the 
correlation coefficient as a function of the lag time 
between sample bins.  This indicates the degree to which 
a relationship exists between traffic levels at certain time 
separations.  [2] found mixed results with some traces 
from aggregated links showing relatively strong 
correlation and others including the LAN traces showing 
poor correlation.  Congested links will, of course, show 
strong correlation. 
 
Following the approach in [2], the Pearson product-
moment correlation coefficient was derived between 2 
data sets for a specific terminal and application type as:  
 
rX,Y

∑ ∑ ∑

∑ ∑ ∑ ∑
 (1) 

 
where X is the data set representing the number of bytes 
that arrived at a queue in each epoch e and Y is the data 
set representing the number of bytes that arrived at the 
queue in epoch e+4.  So X and Y represent the arrivals 
each epoch for a particular terminal and particular type 
of traffic, where Y is simply the X data set time shifted 
by 4 epochs.  n is the number of epochs (data pairs) 
included in the derivation.   
 
The correlation coefficient is a measure of the linear 
relationship between the two variables, ranging from -1 
to +1.  A 1 indicates perfect positive correlation while a -
1 indicates perfect negative correlation. A 0 indicates no 
linear correlation of the 2 data sets.  Interpretation of the 



 

correlation coefficient value is somewhat dependent on 
the process being evaluated but in general values below 
0.5 represent very low correlation, 0.51 – 0.79 represents 
low correlation, 0.8 – 0.89 moderate correlation and > 
0.89 high correlation.  As seen in the coefficient 
described next, even a 0.9 or higher coefficient of 
correlation can allow a fair amount of independence 
between the data sets. 
 
A complementary coefficient was calculated in addition 
to the correlation coefficient called the Coefficient of 
Determination.  This is the square of the Pearson 
product-moment correlation coefficient and represents 
the percent of common variance between the 2 data sets.  
This is used to gauge the percentage of variability of Y 
that can be explained by variance in the X variable.  The 
remaining percentage is unexplained and is a measure of 
the prediction error when predicting Y from X. 
 
Only sample pairs where either x or y were non-zero 
were evaluated. Sample pairs in which both were zero 
were excluded in order to concentrate on traffic arrival 
prediction during active periods since terminal inactivity 
tends to persist.  Full stack application models were built 
in Opnet and configured based on behavioral parameters 
derived from trace studies of application traffic in real 
operational networks including large and small FTPs, 
web traffic, texting and VBR streaming video. For each 
application type, the model was run multiple times, 
varying random seeds, until between 1500 and 5000 
epochs worth of data was collected.  Results are shown 
in Table 1. 
 

Table 1 - Correlation Analysis of Pkt Traffic Arrivals 

 
 
The results show very low correlation for all but the 
Large FTP application as expected.  The Large FTP 
correlation coefficient was close to the highly correlated 
range, indicating the arrivals four epochs apart exhibit a 
near linear relationship.  The coefficient of 
determination indicates that over 75% of the variation of 
epoch n+4 is accounted for by the variation in epoch n. 
The correlation seen with this application configuration 

is due in large part to the fact that it allows the TCP 
session to progress through slow start and fill the pipe.  
Once there it adjusts its sending rate to the available 
bandwidth and keeps a fairly steady arrival rate over the 
remainder of the file transfer.   
 
This contrasts with smaller FTPs as well as the web 
browsing and texting applications in which the 
underlying TCP connection never leaves slow start and 
doesn’t fill the pipe before the message transfer 
completes.  These short transactions are much burstier 
and thus more difficult to predict 4 epochs out as 
evidenced by their very low correlation coefficients.  
Less than a quarter (with web browsing substantially 
less) of the variation in the arrivals in epoch n+4 can be 
accounted for by the variation in arrivals in epoch n for 
traffic generated by these applications.  That leaves a 
substantial amount of uncertainty in the possible arrivals 
that can occur 4 epochs into the future which will result 
in higher prediction errors. 
 
Streaming video traffic showed the least amount of 
correlation in arrivals 4 epochs apart.  The codec 
analyzed, H.263, is a variable bit rate encoder that 
generates variable size frames with variable inter-frame 
times based on the content being encoded.  This results 
in a very dynamic arrival rate with the difference in 
arrivals 4 epochs apart quite variable with large 
magnitudes.  
 
Another way to see the relationship between arrivals is 
to use a scatterplot with arrivals in epoch n (the 
independent variable) along the x-axis and arrivals in 
epoch n+4 (the dependent variable) along the y-axis.  
This shows the degree of correlation (or lack thereof) 
that exists between 2 data sets.  Linear correlation would 
show in the graph as data points scattered closely around 
(or directly on) a line, while non-linear correlation might 
show up as points clustered around a curve representing 
the non-linear relationship between the data sets.  The 
closer the data points are clustered around a line (or 
curve for non-linear dependence) the stronger the linear 
correlation.  The exception is a vertical or horizontal line 
which shows independence since one of the variables 
would be constant regardless of the value of the other.     
 
A scatter plot of streaming video (Figure 2) clearly 
shows no linear relationship between these data sets and 
thus the extremely poor correlation coefficient seen in 
Table 1 above. 
 

Traffic Type Correlation Coefficient 
r 

Coefficient of Determination
r2x100 

Large FTPs (1MB – 12MB) 0.872830 76% 

Small FTPs (10KB – 500KB) 0.477526 22.8% 

Web Browsing (HTTP) 0.101825 1% 

Texting -0.335131 11.2% 

Streaming Video - H.263 codec 
Low Motion Scenes (talking head) 

-0.061915 0.4% 

Streaming Video - H.263 codec 
Dynamic Scenes (action movie) 

0.011479 0.01% 

 



 

 
Figure 2 - Streaming Video Packet Arrivals Scatterplot 

This analysis was conducted with terminal workloads 
showing very little aggregation, representative of those 
with a relatively small number of simultaneous users 
behind them.  Terminals with more traffic aggregation 
may have different characteristic uplink loads.  Such 
aggregation is likely for larger terminals servicing a 
large number of users, possibly from multiple tactical 
networks. Network characteristics outside the FSPN 
domain could also lead to different results, e.g. a 
congested bottleneck along the path in a user network 
could cause resulting traffic arrivals into the FSPN 
appear smooth. As a result, the correlation might be 
higher.  However, these cases likely represent transients 
that would not be generally useful for more fine grained 
predictions. 
 
The correlation analysis detailed in this section showed 
that except for large and long-lived FTPs, traffic arrivals 
show very low correlation at 4 epoch lags.  In most 
cases, less than 25% of the variability of arrivals in 
epoch n+4 can be explained by variability in epoch n.  In 
many cases it is substantially less. Much of arrival 
dynamics 4 epochs into the future are unlikely to be 
precisely predictable with linear prediction models and 
at best difficult for the more computationally intensive 
non-linear models 
 

DAMA REQUEST STRATEGIES 

DAMA request strategies can be categorized based on 
the request quanta utilized (Figure 3). There are 
advantages and disadvantages associated with request 
granularity.  A fine-grained request quantum implies use 
of more precise traffic prediction, while a coarse-grained 
request quantum implies use of lower precision 
prediction.  As seen in the last section, precision does 
not imply prediction accuracy. Coarse-grained requests, 
i.e. binary activity/inactivity indications, are more likely 
to be accurate which leads to more deterministic 

performance. Coarse-grained requests also need fewer 
request updates but may result in more unused resources 
and thus reduce effective capacity.  More granular 
requests, when accurate, can allow more harvesting of 
unused resources but may suffer frequent prediction 
errors and will require a higher request frequency.  

 

Figure 3 - DAMA Request Approaches 

The DAMA request strategies evaluated in this study 
range from utilizing a very coarse metric of 
activity/inactivity (whether a terminal will have any 
packet arrivals or not) to the most granular (how many 
bytes will arrive).  The former approach is termed 
Activity Based (AB) and the request (prediction) is 
simply based on the presence or absence of arrivals 
during the last epoch.  The latter is termed Load Based 
(LB) and the request is based on an exponential 
weighted moving average of the arrivals from past 
epochs.  These represent opposite ends of the spectrum 
and serve to frame the problem space. Additional 
variants, that fall in between, were evaluated by 
incorporating varying levels of traffic prediction 
granularity.  These used multiple discrete request levels 
or quanta that are selected based on past arrivals, where 
one level is equivalent to the AB approach described 
above.  These variants are referred to as Multi-level 
Activity Based (MLAB).  Figure 4 shows how request 
levels are selected based on past arrivals for a 2-level 
MLAB approach.  When arrivals fall within an activity 
level range for a terminal in an epoch (1 or 2 in this 
case), the corresponding request level is used.  Simple 
dampening mechanisms can be used to prevent rapid 
oscillations between request levels. 

 

Figure 4 - MLAB Request Levels (2-level example) 
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EVALUATION CRITERIA 

To evaluate the performance of DAMA request 
strategies, a mix of high level aggregate metrics that 
represent performance directly observable by FSPN 
users and low level metrics for the MAC layer DAMA 
behavior were used.  Together, these give an evaluation 
of the ability of each approach to maintain commitments 
in terminal SLAs and maximize effective system 
capacity with least complexity.  
QoS Metrics (Delay and Packet Loss) 
Edge-to-edge QoS metrics are used as one assessment of 
ability to support terminal SLSs.  Since delay and loss 
metrics will be directly observable by the FSPN user and 
will be part of a service commitment, this metric will 
give insight into how the allocations affect the QoS 
commitments achievable across FSPN. 
Under-Allocations 
One DAMA objective is to allocate rates so it appears to 
users that the SLA rate is always there.  That is, the rate 
allocated should at least be equivalent to the arrival rate 
of the traffic up to the SLA commitment (i.e., number of 
bytes arriving in an epoch ≤ number of bytes allocated 
for transmission in the epoch).  Allocations less than the 
arrival rate (i.e., more bytes arriving than leaving over an 
epoch) result in a queue sustained across epochs, with 
longer delays and/or packet loss that can affect the 
performance commitments.  This condition is termed an 
under-allocation and it is measured in number of epochs 
of occurrence across all terminals in each experiment. 
Misallocated Bytes 
The Misallocated Bytes metric is a measure of how 
efficiently resources were allocated to terminals in order 
to maximize the effective capacity.  It is a measure of the 
number of unused bytes allocated to terminals (allocated 
bytes > arriving bytes) in an epoch that theoretically 
could have instead been allocated to terminals that were 
under-allocated (allocated bytes < arriving bytes) in that 
same epoch.  The misallocated bytes are tallied in each 
epoch of a simulation across all terminals and are 
summed over all epochs in each simulation.   
Overhead/Complexity 
This is a measure of the DAMA requests and grants that 
were needed for each request strategy used.  The uplink 
request frequency provides a quantifiable measure of the 
DAMA overhead necessary and also gives some insight 
into the required complexity and processing in the 
terminals and satellite to generate and utilize these 
DAMA request updates to allocate resources each epoch.  
When hundreds of terminals share uplink DAMA 
resources, the complexity of receiving and processing 
requests, completing the uplink channelization process 
to derive individual allocations and sending the 

assignments back to all terminals is not trivial especially 
for size weight and power (SWAP) constrained payload 
processors.   
 

SIMULATION SETUP 

The simulation scenario utilized contains 100 FSPN 
terminals under a single satellite sharing a common pool 
of uplink RF resources through DAMA.  Each terminal 
has a router and a DAMA agent that sends a request to 
the satellite DAMA controller based on the packet 
arrivals at the terminal router queues each epoch.  The 
DAMA controller receives all requests from terminals 
and issues grants to each based on available RF 
resources using a multi-frequency TDMA channelization 
process.  Most terminals in the simulation have 1 Mbps 
uplink committed rates while a smaller subset has 4 
Mbps uplink commitments.  The resources available on 
the uplink are constrained, meaning that not all terminal 
commitments can be met in most epochs.  Space – 
ground links include GEO propagation delays and 
various lower layer processing delays.  All packet paths 
include both an uplink and downlink.  The uplink is the 
focus of this study. 

Application models are used to generate the packet 
traffic.  The models include FTP, web browsing, routing 
control traffic, texting and video streaming.    Inelastic 
real-time traffic such as interactive voice and video 
conferencing was not included in this study, since the 
strict QoS metrics and other operational policies 
typically required with these traffic types necessitate the 
use of resource allocation strategies different from the 
epoch-by-epoch DAMA approaches assessed in this 
study. 

Since application models with stochastic behavior were 
used, a Monte Carlo simulation technique was employed 
to allow for convergence and thus higher confidence in 
the resulting data. Each test case was run up to 100 times 
using different random number seeds.  Each simulation 
run is 3600 seconds in duration.   

Table 2 - Traffic to Queue Mapping 

 

Terminal routers are configured with 4 queues with a 
class based weighted fair queue scheduler.  Packets 
generated from the application models were marked with 
Diffserv Code Points (DSCPs) and placed in the four 

Application Traffic  IP Queue

Streaming Video Packets  Queue 4

Routing Control Packets  Queue 3

FTP Packets  Queue 2

Web Browsing and Texting Packets  Queue 1 (Default)



 

queues in each router as indicated in Error! Reference 
source not found.. 

SIMULATION RESULTS 

Results are organized with respect to the four metrics of 
Evaluation Criteria.  Multi-level AB (MLAB) was 
evaluated using 1, 2, 4, 6, 8 and 10 request levels and the 
performance was compared to the most granular LB 
request approach. 

The objective of these tests was to establish baseline 
DAMA performance using a simple, low risk approach 
that toggles between the full committed rate and a low 
trickle rate when the terminal moves between active data 
transmission and data inactivity.  Additional levels of 
request granularity are then introduced to quantify the 
effects of attempting more precise load prediction and 
evaluate whether gains in performance can be achieved.  
Gains were expected going from a single level (binary 
request) to multiple levels, with diminishment at some 
point as predictions become increasingly granular and 
prediction errors rise. It was expected that a few coarse 
levels would offer the majority of gains in harvesting 
unused allocated bytes and thereby increase effective 
system capacity without the negative side-effects of the 
very granular LB DAMA request approach.   

Test results largely support this hypothesis.  As can be 
seen in the results presented here, all metrics showed 
improvements going from 1 level (AB) to multiple 
levels, but improvements leveled off and even reversed 
in some cases as the request granularity increased 
towards the LB request approach. Eventually the 
negative effects of rising prediction error probabilities, 
specifically under-request errors, and increases in 
request frequency overshadow the additional minor 
resource efficiency gains that might result from 
increasing the prediction granularity further.    

Figure 5 shows the packet delay metric for FTP traffic 
where improvements can be seen going from 1 level to 
multiple levels.  This is due to the increased ability to 
harvest unused allocations and thus increase effective 
capacity (i.e., resources were utilized more efficiently to 
allow more terminal demand to be met).  This led to 
lower packet delays.  However, the LB request approach 
did not see this improvement.  Its requests were the most 
granular, but they suffered more prediction errors due to 
the inherent uncertainty with traffic arrivals as described 
previously.  Under-request errors were particularly 
harmful since these caused DAMA to allocate less than 
the terminals needed and thus increased packet delays as 
packets backed up in the router queues. 

 

Figure 5 - Packet Delay Metric (FTP) 

This same effect can be seen in the next two metrics – 
under-allocations Figure 6 and misallocated bytes Figure 
7. Starting from a single request level, the under-
allocations and misallocated bytes are relatively high due 
to the inability to accurately harvest unused allocations 
from terminals using less than their full committed rates.  
This prevents these unused allocations from being 
allocated to other terminals to satisfy actual demand and 
thus increase effective capacity.  Increasing the request 
granularity to 2 levels provides a fairly dramatic 
improvement in both metrics as DAMA is able to 
identify terminals that only need half or less of their 
commitments, thus reducing unused allocations.  

 

Figure 6 - Under-Allocations Metric 

Further levels provide minor improvements up to a point 
as the average number of under-allocations and 
misallocated bytes drops slightly.  As the number of 
levels rises approaching 10 and LB, the performance 
actually worsens.  This is the result of increasing under-
request errors due to an attempted DAMA request 
precision that is not supported by the uncertainties 
involved in traffic arrivals. 
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Figure 7 - Misallocated Bytes Metric 

The last metric evaluated is the frequency of DAMA 
request updates necessary with each approach.  Since the 
LB request approach attempts to predict the arrivals 
precisely, it updates the request every epoch for those 
terminals with traffic.  Other approaches issue request 
updates only if the arrival rate predicted falls outside of 
the range predicted previously.  The range is based on 
the number of request levels used.  Generally the more 
request levels used, the more frequently the requests 
must be updated to reflect changing traffic levels.  
Figure 8 shows the result. 

 

Figure 8 - DAMA Request Frequency Metric 

As expected, the AB 1-Level approach required the least 
request frequency as updates were only necessary if a 
terminal had traffic before and now does not or vice-
versa.  Adding additional request levels increases the 
request frequency with over twice as many requests 
needed on average using 10 request levels as compared 
to a single level.  The LB approach requires a far higher 
frequency, with over an order of magnitude more 
DAMA requests than any of the MLAB approaches.  
This can offer a significant decrease in both overhead to 
transmit the requests and the updated allocations as well 

as the processing and complexity required in the 
terminal and satellite DAMA. 

SUMMARY 

Due to long request/grant cycles, FSPN DAMA faces 
challenges not faced by BoD terrestrial networks.  
Terminal queue measurements are predictions of a 
terminal’s needs seconds into the future rather than 
request to service particular packets in queue.  This 
raises concerns for DAMA schemes that attempt precise 
prediction.  As shown here, packet traffic over these 
timescales is not very predictable in most cases.   

DAMA request approaches were evaluated that 
incorporate load prediction of varying granularity from a 
simple binary request structure (all or nothing) to a fine 
grained request scheme that attempts precise prediction.  
A comprehensive set of evaluation metrics was 
developed to characterize the ability of each approach to 
meet terminal SLAs and utilize RF resources efficiently 
with the least complexity/overhead.  A parametric 
analysis showed that by increasing the prediction 
granularity only slightly through the use of a few coarse 
request levels, most of the resource efficiency realizable 
from FSPN DAMA is achieved without incurring the 
majority of the negative side-effects of fine-grained load 
prediction observed for LB request approach such as 
frequent under-request errors and high request 
frequency.  In general FSPN DAMA requests should 
recognize the nature of packet traffic by not attempting 
traffic prediction unsupported by the uncertainties 
involved and instead focus on meeting terminal 
commitments as efficiently as possible. As seen, this 
permits the use of simple terminal reporting and 
bandwidth allocation models that are effective in 
delivering SLA commitments while sharing unused 
resources. 
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